The photograph on the cover shows an eruption of Kilauea on the island of Hawaii. (Mauna Ulu fountain, 6 September 1969, US Geological Survey Photo.)

PROLOGUE

p. 8 Second line after Equation (10): ...the variable t in Equation (10)...
p. 42 Problem 6. Add: Take values of $800 \mathrm{~kg} / \mathrm{m}^{3}$ and $0.20 \mathrm{~Pa} \cdot \mathrm{~s}$ for the density and the viscosity of the fluid, respectively.
p. 46 Problem 32, line 2: ...at the smaller exit...

CHAPTER 1

p. 69 Third line from bottom: Young's modulus is equal to $12.3 \cdot 10^{10} \mathrm{~N} / \mathrm{m}^{2}$.
p. 95 Middle of page: change Xref Equation (16b) to Equation (19)
p. 102 Second line after Equation (24): change Xref Equation (22) to Equation (24)
p. 115 Second line after Equation (33): change Xref Equation (31) to Equation (30)
p. 123 Second equation from top:

$$
\begin{aligned}
\ldots & =6 \pi \mu r v_{\max }^{2} \\
& =\frac{8 \pi}{27} \frac{r^{5}\left(\rho-\rho_{\text {oil }}\right)^{2} g^{2}}{\mu}=4.11 \cdot 10^{-6} \mathrm{~W}
\end{aligned}
$$

p. 128 Equation (E24):

$$
\begin{aligned}
\eta_{2} & =\left(\sum_{i=1}^{n} \mathcal{P}_{a v, i}-\mathcal{L}\right) / \sum_{i=1}^{n} \mathcal{P}_{a v, i} \\
& =1-T_{o} \Pi_{s} / \sum_{i=1}^{n} \mathcal{P}_{a v, i}
\end{aligned}
$$

p. 142 Change index in Equation (62):

$$
I_{\text {mech }}(\max)=I_{\text {in }}(\max)\left[1-\frac{a b T_{o}}{a b T-(a+b) I_{i n}(\max)}\right]
$$

p. 143 After Solution: change Xref Equation (62) to Equation (63)
p. 143 Last paragraph: change Xref Equation (60) to Equation (61) [two times]
p. 148 Problem 34: change c) to b)
p. 150 Problem 51c: change $\left(T-T_{o}\right) 2 / T$ to $\left(T-T_{o}\right)^{2} / T$

CHAPTER 2

p. 162 Third line from bottom. Change In Figure $3 .$. to In Figure $4 .$. .
p. 163 Figure 4: T / T_{o} should be replaced by T / T_{D}
p.184: Equation (64): $\quad P^{1-\gamma} T^{\gamma}=$ constant
p. 238 Problem 19. Add the following: The energy supplied in melting and in evaporating one mole of argon is 1.18 kJ and 6.52 kJ , respectively.
p. 239 Equation at top of page: change signs:

$$
S_{e}=\int_{V_{i}}^{V_{f}} \Lambda_{V} d V+\int_{T_{i}}^{T_{f}} K_{V} d T
$$

INTERLUDE

p. 263 Change Equation (64) to

$$
\gamma^{\prime}=\frac{K_{P}-K}{K_{V}-K}
$$

Change 3rd sentence after Equation (64) to: For negative values of K, γ^{\prime} changes from 1 to γ; for values of K between 0 and K_{V}, the polytropic exponent increases to $+\infty$; finally, for $K \geq K_{V}$, the exponent is in the range of minus infinity to 1 .
p. 273 Equation (93), last part:

$$
\ldots=-\int_{\mathcal{A}} \frac{\partial P(V, T)}{\partial T} d V d T
$$

Second line after Equation (95): change eversible to reversible

CHAPTER 3

p. 345 Second line after Equation (66): change Xref Example 40 to Example 39
p. 347 Change Equation (71): add factor A to the third equation:

$$
\begin{aligned}
& I_{s a}=\frac{1}{T_{a}} h_{a} A\left(T-T_{a}\right) \\
& I_{s, \text { room }}=\frac{1}{T_{\text {room }}} h_{\text {room }} A\left(T-T_{\text {room }}\right) \\
& \dot{S}=\frac{1}{T} \dot{E}=\frac{1}{T}\left(-I_{E a}-I_{E, \text { room }}+A a \mathcal{G}\right)
\end{aligned}
$$

p. 348 Change Equation (72): add factor A to $a G$:

$$
\dot{E}=-I_{E a}-I_{E, \text { room }}+A a \mathcal{G}
$$

Line after Equation (72): change $a \mathcal{G}$ to $A a \mathcal{G}$.
p. 413 Example 37. Chnage absorptivities and emissivities to 0.95 and 0.21 , and 0.28 and 0.95 , for iron and paper, respectively.
p. 443 Problem 22b: ...proportional to both the square root of the total heat transfer coefficient and the difference of temperatures...
p. 445 Problem 31: ...and calculate the entropy current density for such radiation near the Earth.

CHAPTER 4

p. 475 Example 12: units must be $\mathrm{J} / \mathrm{mole}$
p. 485 Third line from bottom: ...takes place at constant pressure...
p. 510 Figure 30: replace s / n by S / n
p. 545 Equations (203) and (205): change indices:

$$
\begin{gathered}
\left|I_{E, 34}\right|=T_{3}\left(s_{3}-s_{4}\right) I_{m} \\
\left|I_{E, 23}\right|=\left|I_{E, 12}\right|-\left|I_{E, 34}\right|-\left|I_{E, 41}\right| \\
\approx\left(h_{2^{\prime}}-h_{1}+T_{2}\left(s_{2}-s_{2^{\prime}}\right)\right. \\
\\
\left.\quad-T_{3}\left(s_{3}-s_{4}\right)-v_{4}\left(P_{1}-P_{4}\right)\right)
\end{gathered}
$$

p. 585 Change Xref Equation (126) to Equation (122)
p. 587 Problem 28. Change equation for k_{1} :

$$
k_{1}=\frac{R}{t_{a}^{3}\left(1 / \pi-4 / \pi^{3}\right)}
$$

EPILOGUE

p. 616 Third to fifth line from top. Change to: ...The convective current, on the other hand, can be expressed in terms of the specific value of the quantity which is transported by matter and the flux of mass; see Equation (129) of Chapter 4:
p. 620 Equation after Equation (98):

$$
\int_{V} \frac{\partial \rho}{\partial t} d V+\int_{V} \frac{\partial}{\partial x}(\rho v) d V=0
$$

p. 639 Third line after Equation (149): change Xref Equation (131) to Equation (130)
p. 644 Footnote 24: the terms

$$
v_{x} \frac{\partial u}{\partial x}+v_{y} \frac{\partial u}{\partial y}
$$

must be replaced by

$$
\rho v_{x} \frac{\partial u}{\partial x}+\rho v_{y} \frac{\partial u}{\partial y}
$$

p. 645 Fourth line should read: ...the variation of pressure...
p. 656 Problem 11, second equation: change $\left(\rho c_{p}\right)_{a}$ to $\left(\rho c_{p}\right)_{p}$.

APPENDIX

p. 672 Table A.15: change column headings $s / \mathrm{J} / \mathrm{K}$ and h / kJ to $\bar{s} / \mathrm{G} / \mathrm{K}$ and $\overline{\boldsymbol{h}} / \mathrm{kG}$, respectively.
p. 693 Add the following reference: I.S. Liu (1972): Method of Lagrange Multipliers for Exploitation of the Entropy Principle. Arch. Rational Mech. Anal. 46.

