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ABSTRACT 
In this paper, we discuss a contribution toward the use of analogical reasoning by explicit system dynamics 
modeling of physical processes. The relational structures found in simple models are transferred to an example of 
chemical processes leading to chemical equilibrium. We present an experiment on the mutarotation of D-glucose. 
A dynamical model will be built that makes use of amount of substance and chemical potential differences in 
analogy to quantities of fluid and pressure differences in fluid phenomena, or electric charge and voltage in 
electricity. The model is simulated and results are compared to experimental data. 
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1 – INTRODUCTION 
 
Analogical reasoning is considered a powerful tool for learning and thinking in the sciences (Fuchs, 
2006). When dealing with macroscopic dynamical systems, analogical structures in physics emerge 
quite naturally. Explanations of processes commonly make use of a structure built upon the schema of 
(potential) differences of intensive quantities, and the schema of amount of fluid-like quantities 
(extensive quantities). The third element is the schema of force or power which is related to intensity 
and (fluid-like) quantity, and can be used to form the foundation of our energy principle. We call the 
overall structure a force dynamic gestalt (Fuchs, 2007). 
 
Sadi Carnot’s description of the operation of heat engines serves as an example of this explanatory 
structure (Fuchs, 1996): “D'après les notions établies jusqu'à présent, on peut comparer avec assez de 
justesse la puissance motrice de la chaleur à celle d'une chute d'eau […]. La puissance motrice d'une 
chute d'eau dépend de sa hauteur et de la quantité du liquide; la puissance motrice de la chaleur 
dépend aussi de la quantité de calorique employé, et de ce qu'on pourrait nommer, de ce que nous 
appellerons en effet la hauteur de sa chute, c'est-à-dire de la différence de température des corps entre 
lesquels se fait l'échange du calorique.” (Carnot, 1824). Caloric is the fluid-like thermal quantity that 
falls through a potential difference (temperature difference) and as a result releases energy at a certain 
rate (power). 
 
To be concrete, intensive and extensive quantities are pressure and volume in fluids, electric potential 
and charge in electricity, temperature and entropy in heat, and speed and momentum in translational 
motion.  
For the simplest dynamical phenomena that commonly lead to equilibrium, explanations take the 
following form. A process consists of the flow of a fluid-like quantity (volume, charge, entropy, 
momentum) from one storage element to another. The flow is driven by a difference of the associated 
potential (pressure, electric potential, temperature, speed) and persists as long as the potential difference 
has not reached a value of zero (the relation between flow and potential difference is called flow 
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characteristic). The potentials themselves depend upon the amount of the fluid-like quantity stored in a 
system, and the storage element itself (capacitive characteristic). Analogies of this type become 
particularly evident when we use system-dynamics tools to convert the word model presented above 
into a formal mathematical model (see Fig. 1). 
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Figure 1. The phenomena of the equilibration of fluid levels, voltages, velocities, and temperatures can 

be explained with the help of analogous model structures. Rectangles symbolize fluid-like stored 
quantities; pipelines (fat arrows) stand for transports. (In the case of thermal equilibration, we have left 

out the production of entropy which, however, is commonly very small compared to the flow of 
entropy; Fuchs, 2006, p. 172). 

 
 
These tools make use of a very few elements which allow us to translate our ideas into formal 
representations. We only need a symbol for stored quantities, another for flows (generally speaking, for 
rates of processes), and one for formulating special relations such as flow and capacitive laws. 
Each of the system-dynamics models presented in Fig. 1 allow us to simulate the behavior of systems 
which tend toward equilibrium (Fig. 2). 
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Figure 2. Two communicating oil tanks (top left), data of the equilibration of levels (top right), situation 

sketch (bottom left) and SD model diagram (bottom right). 
 
 
Chemical phenomena are no strangers to this explanatory pattern. Chemical reactions running toward 
equilibrium are common, and the well known quantities of amount of substance (n) and the chemical 
potential (µ) provide the conceptual background for explanations analogous to those used in fluids, 
electricity, heat, and motion. This we will demonstrate in the following sections where we consider the 
phenomenon of mutarotation of D-glucose. 
 
 
2 - EXPERIMENT AND WORD MODEL 
 
Here we present the background on and the results of an experiment measuring the mutarotation of D-
glucose. The phenomenon will be explained with the help of a word model that makes use of the form 
of reasoning discussed in the Introduction. 
 

 
Figure 3: Apparatus for measuring the rotation of the plane of polarization of light passing through a 

solution of D-glucose. The angle change in the course of time indicates that chemical reaction is taking 
place in the solution. 
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Background and experimental procedure 
 
At the beginning of the 19th century, some dissolved substances were observed to rotate the plane of 
polarization of light (optically active substances, Fig. 3). Biot’s law states that 
 

[ ] *lcϕ ϕ=  (1) 
 
Here, ϕ is the angle of rotation, [ϕ] denotes specific rotation of the particular solution (taken at 20°C 
and with the light of sodium), and l and c* stand for the distance the light travels in the solution and 
mass concentration, respectively.  
It has been observed that the specific rotation of some solutions can change over the course of time. It 
tends to assume a particular value which is independent of the initial composition of the solution.1 It has 
been found that in such situations the substance under study can exist in two (or more) distinct forms, 
called anomers, each one characterized by its own specific rotation. In solution the mixture tends 
towards a well defined composition in equilibrium. The final condition depends upon the nature of the 
substance under study, the solvent considered, temperature, etc.. 
In an aqueous solution of D-glucose, these anomers (called α-D-glucose and β-D-glucose) have 
different optical properties (different specific rotation [ϕ], see The Merck Index, 2006): 
 

( ) ( )
( ) ( )
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o o 3
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α

β

ϕ
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 (2) 

 
For a solution which contains both forms of D-glucose the specific rotation can be expressed as follow: 
 

( )1eff x xα βϕ ϕ ϕ⎡ ⎤⎡ ⎤ ⎡ ⎤= − + ⎣ ⎦⎣ ⎦ ⎣ ⎦  (3) 
 
Where / totx n nβ=  is the β-D-glucose molar fraction. 1–x stands for the molar fraction of α-D-glucose. 
The time evolution of the angle measured in a typical experiment is reported in Fig. 4 (left). From the 
foregoing we easily obtain the molar fraction x: 
 

effx α

α β

ϕ ϕ

ϕ ϕ
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 (4) 

 
In order to obtain the time dependence of the chemical amounts we must remember that Biot’s law 
involves mass concentrations c*. Expressed as molar concentration c we obtain 
 

( ) ( )
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*
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 (5) 

 
for the amount of substance of the two forms of D-glucose as functions of time. The result of our 
experiment is shown in the graph on the right of Fig. 4. 

                                                 
1 See W. Pigman and H.S Isbell (1969) which refers to the pioneering works of A.P. Dubrunfaut (1846) 
and L. Pasteur (1848). H.T. Lowry (1899) first introduced the term mutarotation. 
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Figure 4: Angle of optical rotation measured in a typical experiment showing the mutarotation of D-

glucose (left). The data has been transformed to obtain the amount of substance of α- and β-D-glucose 
(right). We prepared 100.0 g of an aqueous solution containing 10.0 g of pure α-D-glucose. The length 

of the optical path was 20.0 cm (see Fig. 3). Data was taken at room temperature. 
 
 
A word model 
 
Three things can be observed in the experiment. Firstly, the process runs fast at the beginning, slowing 
down as time goes on and, secondly, the reaction which leads to a change of the quantities of α and 
β−D−glucose reaches equilibrium. Finally, in equilibrium, neither the amount of substance nor the 
concentration of the two species have become equal. Since we have seen curves of the type presented in 
the diagram on the right of Fig. 4 in other phenomena in physics, it seems reasonable to use the same 
type of explanation for the present phenomenon. 
The quantity of α-D-glucose in solution decreases with time since some of it converts into β-D-glucose. 
As a result, the amount of β-D-glucose increases. The rates of change of amount of substance are equal 
to the rate of production or destruction of β- and α-D-glucose, respectively. We now assume that the 
reaction rate depends upon the difference of an intensive chemical quantity. This difference will 
become zero in equilibrium. Obviously, the quantity in question cannot be the amount of substance 
(Fig. 4, right). We might be surprised, however, to find that the concentration of the substances is not 
the quantity we are looking for either. Rather, the intensive quantity is the chemical potential. The 
dependence of the chemical potential upon the concentration must be such as to make the potential 
difference vanish in equilibrium. If we assume that the chemical potential of a dissolved substance 
increases with increasing concentration, we now understand the slowing down and eventual halting of 
the reaction: The initial potential difference that drives the reaction becomes smaller as time goes on. 
 
 
3 - CHEMICAL POTENTIAL OF DILUTE SOLUTIONS 
 
The solutes of dilute solutions contribute to the pressure of the solution in a manner that is analogous to 
that of dilute (i.e., ideal) gases (see Fuchs, 1996, p. 496 for details): 
 

sp R cT=  (6) 
 
Here, R is the universal gas constant, and T is the (Kelvin) temperature of the solution. Since the 
chemical potential of ideal gases is 
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0
0( , ) ( , ) ln pT p T p RT

p
µ µ

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 (7) 

 
 (Fuchs, 1996, p. 478), an analogous relation holds for the chemical potential of the dissolved 
substance: 
 

0
0( , ) ( , ) ln cT c T c RT

c
µ µ ⎛ ⎞= + ⎜ ⎟

⎝ ⎠
 (8) 

 
c0 is the standard value of concentration. This expression can be used to derive the relation of 
concentrations of two interacting (reacting) species in (chemical) equilibrium. We consider a reaction 
 

A B→  
 

Since the difference of the chemical potential of the species must vanish in equilibrium, i.e., 
 

0 0A B
A B0 0ln ln

eq eqc cRT RT
c c

µ µ
⎛ ⎞ ⎛ ⎞

+ = +⎜ ⎟ ⎜ ⎟
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we have 
 

0
B
0

A

eq

eq

c c
c c

=K  (9) 

 
where the equilibrium constant K is related to the chemical potential difference of the species for 
standard conditions: 
 

( )0 0
B A lnRTµ µ− = − K  (10)

 
Note that since the standard concentrations of A and B are the same, the equilibrium constant equals the 
ratio of the equilibrium concentrations.  
The case of mutarotation of D-glucose (Fig. 4) allows us to determine the numerical value of the 
chemical potential difference. Since, according to our data, K = 1.74, this difference turns out to be 
roughly – 1.36 kJ/mol at 295 K (temperature of the solution in the experiment). The value of the 
equilibrium constant calculated from the literature is 1.75 (The Merck Index, 2006). 
 
 
4 - A SYSTEM-DYNAMICS MODEL OF MUTAROTATION 
 
The word model presented above and our knowledge of the dependence of the chemical potential upon 
the concentration of a species of D-glucose lets us construct a simple system-dynamics model of the 
process of mutarotation (Fig. 5).2 
 

 

                                                 
2 We assume here that mutarotation of D-glucose can be treated as a direct reaction of α-D-glucose into 
β-D glucose. This can be done since an intermediate form appearing in reality exists only in very low 
constant concentrations (Rasiel and Freeman, 1970). 
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Figure 5: Diagram of a system-dynamics model representing the ideas expressed in the word model 
describing the phenomenon of mutarotation. Note the laws of balance of amount of substance for α-D-
glucose and β-D-glucose (rectangles and flows), the determination of the chemical potentials from the 
amounts, of the chemical potential difference from the chemical potentials, of the reaction rate in terms 
of the chemical potential difference, and of the production rates in terms of the reaction rate. The model 

diagram was constructed in Stella. 
 
 
The model consists of the two laws of balance for α-D-glucose and β-D-glucose 
 

,n n

dndn
dt dt

βα
α βπ π= =  (11)

 
The production rates πnα and πnβ are directly related to the reaction rate πR, where the concrete relation 
is a result of stoichiometry. In our case we have 
 

,n R n Rα βπ π π π= − =  (12)
 
Furthermore, the constitutive relations for the chemical potential difference is 
 

( )ln ln
c

RT
c
β

α

µ
⎡ ⎤⎛ ⎞

∆ = − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

K  (13)

 
and the reaction rate is determine by 
 

1
R

nR
π µ= − ∆  (14)

 
The last relation assumes the simplest form of a reaction driven by a chemical potential difference, 
namely, a rate proportional to the driving force. If we assume such a relation for the chemical reaction, 
we have to introduce a reaction constant. This can be done in the form of a reaction resistance Rn 
(which is constant) as shown in Eq. (14). Whether or not the relation describes the actual progress of the 
reaction well enough can only be determined by comparing actual data to results of the simulation of 
our model. Quite obviously, for the present reaction, the assumption of a linear reaction law is 
satisfactory (Fig. 6). 
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Figure 6: Data of the experiment and simulation results of the model presented in this section. Note that 
the linear form (linear in the difference of the chemical potential) of the reaction rate is satisfactory. The 

model was implemented and simulated in Berkeley Madonna. 
 

 
5 - FORMAL CONSIDERATIONS 
 
In chemical kinetics, a different expression for the reaction rates is commonly used. In the case of a 
reaction  
 

A B→  (15)
 
the simplest form of the production rate of species A is 
 

( )A A Bn k c cπ = − −K  (16)
 
c stands for the concentration, and k is a constant for this first order reaction. Note how this form 
follows from our intuitive model that uses the chemical potential difference as the driving force of the 
reaction. We simply linearize the expression for the chemical potential difference for conditions near 
equilibrium. If we use the equilibrium condition (eq) as the reference point for expressing the potentials, 
we have 

B A
B A

B A

-1A B A B B

A B A B A

ln ln

ln 1 1

eq eq
eq eq

eq eq

eq eq

c cRT RT
c c

c c c c cRT RT RT
c c c c c

µ µ µ
⎛ ⎞ ⎛ ⎞

∆ = − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − ≈ − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
K

 (17)

 
We can assume the production rate πnA to be proportional to the concentration of the species A. This 
finally leads to an expression of the form 
 

( )' ' -1 B
A A A A B

A

1n
ck c k c RT k c c
c

π µ
⎛ ⎞

= ∆ = − = − −⎜ ⎟
⎝ ⎠
K K  (18)

 
The result is the same as the typical form found in Eq.(16). This leads to an interesting question of the 
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proper form of a reaction rate in a reaction such as the one discussed here. Since the standard form 
known from kinetics and our expression are the same near equilibrium, they cannot both hold far from 
equilibrium. A general decision as to the proper form cannot be made, however (Cukrowski and 
Kolbus, 2005). We know that Eq. (16) may not hold in general - sometimes nonlinear expressions must 
be used. So, a discussion whether or not a reaction is proportional to the difference of the chemical 
potential is pointless - it depends on the concrete case. All we can say is that, in general, constitutive 
laws for reaction rates and transports are nonlinear. Linear results are special cases. As we know, the 
same is true in electricity or fluids, i.e., characteristic relations for charge and fluid transports are 
nonlinear in general. The example of mutarotation of D-glucose can be satisfactorily dealt with by using 
the linear form with respect to the chemical potential difference.  
 
 
6 - SUMMARY AND OUTLOOK 
 
We have demonstrated here that a simple chemical reaction such as mutarotation of D-glucose can be 
successfully modeled using comparisons with electrical, hydraulic, mechanical, or thermal dynamical 
processes. Analogical reasoning suggests that the process (quantified in terms of a reaction rate) should 
depend upon a kind of driving force. In the case of fluids, electricity, heat, or motion, the driving force 
is a potential difference. The well known chemical potential serves a role analogous to pressure, electric 
potential, temperature, or speed, and the chemical potential difference of two species serves the role of 
the driving force of the reaction between the substances. 
It seems to us that learning in chemistry and biology would greatly profit from an approach that makes 
use of direct system-dynamics modeling. As we have shown, analogical reasoning is at the core of SD 
modeling, i.e., different processes are represented by the same formal structures. In other words, our 
approach allows us to integrate not only different fields of physics, but also phenomena that go beyond 
physics proper, such as chemistry and biology. This can create a unity of subjects that are part of 
secondary education to an extent not normally seen in our schools. Since modeling commonly calls for 
experimental verification, this may well lead to more and stronger quantitative activities in the teaching 
of chemistry and biology (D’Anna, 2006). In fact, driven by modern computer technology and data 
acquisition, we have already seen a growth of experimental activities in the sciences ranging from 
physics through chemistry and biology all the way to applications such as physiology and 
environmental science. We believe that these activities would profit greatly from being supported by 
explicit system-dynamics modeling. 
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