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Description:
In 1979 the Nobel Prize in physics was 

awarded to three men.  Glashow, Salam 
and Weinberg for their work in proving 
how the weak force interaction causes 
such phenomena as beta decay.  Their 
work helped pave the way for the 
nuclear physics that has occurred in the 
past two decades.  This lab deals with 
not only beta decay processes governed 
by the weak force, but also alpha decay, 
alpha capture and neutron activation. 

Silver metal is made up of two stable 
Isotopes.  These isotopes are 109Ag and 
107Ag, which have a relative abundance 
of 48.6% and 51.4% in a sample of 
silver.  By bombarding silver nuclei with 
neutrons it is possible to activate them 
into a state of radioactivity in which they 
will beta decay to two isotopes of Cd.  

  
In order to bombard our silver sample 

we placed it in range of a source 
consisting of radium and beryllium.  The 
radium decays to give up an alpha 
particle which causes the beryllium to 

eject a neutron from its nucleus. The 
following reactions took place to give up 
neutrons: 
Eq. 1.0            226Ra ⇒ Rn + α 
Eq. 1.1           6Be + α ⇒ 12C + n 

The neutrons freed in the previous 
reactions were absorbed by the stable 
isotopes within our silver sample to 
activate them by the following reactions: 
Eq. 1.2      109Ag + n ⇒ 110Ag + γ 
Eq. 1.3      107Ag + n ⇒ 108Ag + γ 

Once our sample had been completely 
activated it was removed from the source 
and allowed to beta decay by the 
processes given in Equations 1.4 and 
1.5.  Using a Gieger counter encased in a 
lead shield (figure 1.0) we were able to 
take a reading of the emitted beta 
particles.  We were given that the half-
lives for these processes were 24.4 
seconds and 145 seconds respectively. 
Eq. 1.4      110Ag ⇒  110Cd + e- + ν- 
Eq. 1.5      108Ag ⇒  108Cd + e- + ν- 

We also measured a background count 
rate when there was no sample within 
range of our Geiger counter.  We took 
two sets of background counts and two 
trials with our radioactive sample of 
Silver. 

All relevant data is recorded in the data 
section. Exercises 1 through 3 are found 
in the data section.  Analysis questions 
sections I and II are recorded in the 
analysis section.  Conclusions are drawn 
in the discussion section.

 
Data:

time (sec) Bkgrd 1 Bkgrd 2 Trial 1 Trial 2 
Bkgrd 
Avg. 

20 4 8 142 149 6 
40 8 7 107 109 7.5 
60 8 7 67 66 7.5 



80 8 6 46 61 7 
100 9 13 36 31 11 
120 4 9 24 33 6.5 
140 12 9 19 29 10.5 
160 9 4 25 19 6.5 
180 6 7 15 21 6.5 
200 9 5 25 21 7 
220 4 5 19 17 4.5 
240 7 5 16 14 6 
260 10 8 20 15 9 
280 9 11 16 20 10 
300 8 10 15 16 9 
320 6 5 11 11 5.5 
340 5 5 11 10 5 
360 8 9 13 17 8.5 
380 7 6 9 6 6.5 
400 5 2 19 12 3.5 
420 10 6 11 9 8 
440 7 6 15 12 6.5 
460 7 7 12 7 7 
480 10 9 12 8 9.5 
500 7 5 7 11 6 
520 11 7 13 8 9 
540 12 3 8 10 7.5 
560 11 5 9 13 8 
580 6 4 10 7 5 
600 10 8 16 10 9 

    Average: 25.6 25.73333 7.3 
  Standard Deviation: 29.42176 31.85304 1.808028 
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Exercise 1: 
 We can assume from our data that the amount of radioactive particles in the 
sample decreases at a rate proportional to number present in the sample at a given time.  
That is to say: 
 dx/dt = -kx 
 We can solve this as a separable first order differential equation where x is the 
concentration ranging from A0 to A(t) and t is the time ranging from zero to t. 
 ∫ dx/x = ∫ -k dt      ⇔ (ln x)[A0< x < A] = (-kt)[0 < t < t] 
 ln (A(t)/A0) = -kt ⇔ A(t) = A0e-kt 
 This last equation gives us a standard form for any decreasing exponential system.  
By inputting some of the values we know we can solve for the half-life as a function of 
the decay constant k.  If we are at t = one half-life we know that the ratio of A to A0 has 
to be equal to ½.  Thus we can state the following: 
 ½ = e-kt   ⇔ -kt1/2 = ln ( ½ )  ⇔ t1/2 = .693/k 
Exercise 2:  

Both the concentrations of decaying particles and the activity of the sample follow 
the exponential that we have discovered above.  So if we use the same logic that we used 
in the previous exercise we can determine the time that it would take for the activity to 
decrease to 1/8 the original activity. 
 After one half-life there will be ½ of the original activity left.  After another half-
life there will be half of what is left, or ¼ the original activity.  And after a third half-life 
there will be 1/8 of the activity sample left. 
Exercise 3: 
 If we plot the concentration of radioactive particles, or the activity versus time we 
should get decreasing exponential functions.  If we plot the natural log of the functions 



we should get decreasing linear functions.  Here are both functions for a sample set of 
data: 
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time N(t) ln (N(t)) 
1 100000 11.51293 
2 10000 9.21034 
3 1000 6.907755 
4 100 4.60517 

 

time N(t) ln (N(t)) 
5 10 2.302585 
6 1 0 
7 0.1 -2.30259 
8 0.01 -4.60517 

 

time N(t) ln (N(t)) 
9 0.001 -6.90776 

10 0.0001 -9.21034 
11 0.00001 -11.5129 
12 0.000001 -13.8155 

 Using the slope formula for the linear graph we can see that the slope of that line 
is equal to the decay constant in the aforementioned formula. 
 m = [ln (A) – ln (A0)] / (t – 0)  ⇔ m = ln (A/A0) / t 
 m = -kt/t ⇔ m = -k 
 So we can easily find the half-life of the sample by using the equation above: 
 t1/2 = 0.693/ k 
Analysis: 
Section I 

1. nave = 1/N(Σ ni) = 7.9 for trial one and 6.7for trial two.  
s = √[1/N-1(Σ (ni – nave)2] = 2.294671 for trial one and 2.409035 for trial two. 

2. If N → ∞, s → σ, and nave → µ.  If σ2 = µ, then we should have a reasonably 
good approximation of this in our values of s and nave.  

s1
2 = 5.26 and s2

2 = 5.80  These values fall somewhat short 
of the expected values due to the small number of data 
points taken in the sample. 

time trial one trial two 
100 37 41 
200 40 34 
300 38 39 
400 31 27 
500 41 33 
600 50 27 

Average 39.5 33.5 
Std Dev 6.220932 5.85662 

 
3.   If the relationship given in part three of section one in 
the lab manual is correct then (2.294671*√(5)) ≈ 6.220932.  
In fact it is closer to 5.024.  Once again this is in large part 
due to the fact that the sample space is so small 
  
 

4. I have chosen to change this question a little to better suit, in my opinion, the 
data and show the normal distribution better.  I have taken both background 
readings and counted the frequencies of each number of counts occurring and 
plotted this set of data as two histograms.  As can be seen in the below figure 



there are some large abnormalities in the data.  Once again these “bumps” 
would smooth out if we had a larger number of counts to choose from. 
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5. If we take, for trial one, the standard deviation to be roughly 2.3 and the mean 

value to be roughly 8 we should see 67% of the counts fall between 5.7 and 
10.3 counts.  For trial one we see that there are 169/258 counts in this region 
and thus 66% of the counts are within one standard deviation.  We should also 
see roughly 94% of the counts within 2 standard deviations (between 3.4 and 
12.6).  This works out to be 100% of the counts, this might work out better if 
there were a greater number of data points in the sample. 

6. The best value for an average would be the average of all 60 of the 
background counts.  This turns out to be 7.543. 

Section II 
1. The half-lives of the two isotopes of silver are 24.4 seconds for 110Ag and 145 

seconds for 108Ag.  By the time 108Ag has undergone one half-life, 110Ag has 
undergone almost six (there is roughly 2% of the original sample left).  If we 
were to look at the rates of decay for these two isotopes as a superposition of 
two straight lines the relative effect of the 110Ag would drop off very quickly 
in comparison to the 108Ag.  This phenomenon can be seen especially well 
when we look at the decay constants for the two isotopes. 
k = .693/t1/2 k108 = .693/145 s = 4.78E-3 s-1 k110 = 2.84E-2 s-1 
As is clearly seen k110 is a whole order of magnitude larger than k108.  This is 
why as t gets large the 110Ag sample does not effect the superposition curve.  
It might be going too far to say that as t goes to infinity the slope of the 
superposition curve goes to the slope of just the decay of 108Ag.  Clearly the 



equation for the activity goes to zero as t goes to infinity.  But if we restrict t 
to be large, but not infinity we see that the presumption is correct. 

2. This will be omitted to save time 
3. As was stated earlier the plot of the ln(A) versus t should be a superposition of 

two straight lines.  The first of these lines has a slope roughly equal to the 
decay constant of 110Ag, and the second has a slope roughly equal to the decay 
constant of 108Ag.  For very small values the superposition of these lines is 
very close to the first line, and for large values it is very close to the second 
line. 

4. For the error we used the natural log of 7.543 (the average obtained in part I).  
It occurred to me that we would never observe error on the negative side, that 
is to say background radiation would never allow us to see fewer counts than 
were actually there so we only put error bars on the positive 
side.
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ln(A) vs t for Trial Two

y = -0.0114x + 4.9846
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ln(A) vs t last twenty pts combined
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6. m = (y2-y1)/(x2-x1)   m∞ = - k108 = .00205 
m0 = -0.01684 m∞ = -.00205 k108N0

108 = (.00205*146) = .2993 
m0 = -0.01684 = -k110[1-(k108N0

108/k110N0
110)] 

Discussion: 
 This lab was a good demonstration of how statistics is a huge part of nuclear 
physics.  It was interesting to see how the half-lives of the isotopes affected each other in 
the decay.  A simple yet intricate chain of events takes place to make this happen.  I think 
this was one of my favorite labs of the term. 
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