NATUR, TECHNIK, SYSTEME TEST 2, MAI 2016

<u>Erlaubte Hilfsmittel:</u> Selbst verfasste, von Hand geschriebene Zusammenfassung; das Buch The Dynamics of Heat von H.U.Fuchs und ein Mathematikformelbuch. Rechen- und Schreibzeugs.

Antworten müssen begründet und nachvollziehbar sein.

Dauer des Tests: 60 Minuten.

Aufgaben

- I. Es soll ein Modell für eine Tierpopulation in einem Park erstellt werden. Die momentane Anzahl Tiere im Park wird mit N bezeichnet. Zum Zeitpunkt t=0 befinden sich N_0 Tiere im Park. Die Tiere werden mit einer Rate Pi_N_G geboren und sterben mit einer Rate Pi_N_S. Zusätzlich wandern Tiere mit einer konstanten Rate I_N ein. Geburten- und Sterberate sind proportional zur momentanen Anzahl Tiere im Park. Bezeichnen Sie den Proportionalitätsfaktor für die Sterberate mit k_S und den für die Geburtenrate mit k_G.
 - 1) Zeichnen Sie das Flowchart für eine Berkeley Madonna Modell auf, mit dem Sie die Anzahl Tiere im Park als Funktion der Zeit simulieren können. (1P)
 - 2) Schreiben Sie alle Gleichungen auf, die Sie für die Simulation brauchen. (1P)
 - 3) Leiten Sie das Anfangswertproblem für N her. (1P)
 - 4) Skizzieren Sie N als Funktion der Zeit für den Fall k_S=2; k_G=1.5;
 I_N=100 Tiere/Jahr und N_0=100 Tiere. Welche Einheit haben k_S und k_G?
 (2P)
- II. Die Parkverwaltung möchte die Anzahl Tiere im Park begrenzen. Dazu wird Einwanderung der Tiere kontrolliert. Die Änderungsrate von I_N ist jetzt neu proportional zu der Differenz zwischen einer maximal erwünschten Zahl Tiere N_max und der momentanen Zahl Tiere im Park. Der Proportionalitätsfaktor wird mit k_L bezeichnet. Zum Zeitpunkt t=0 ist I_N=0.
 - 1) Zeichnen Sie das Flowchart für eine Berkeley Madonna Modell auf, mit dem Sie die Anzahl Tiere im Park als Funktion der Zeit simulieren können. (1P)
 - 2) Schreiben Sie alle Gleichungen auf, die .Sie für die Simulation brauchen. (1P)
 - 3) Leiten Sie das Anfangswertproblem für N her. (1P)
 - 4) Unter welcher Bedingung erhalten Sie eine ungedämpfte Schwingung? (1 P)
 - 5) Wie gross ist die Schwingungsperiode? (1 P)
 - 6) Zusatz: Skizzieren Sie N als Funktion der Zeit, für den Fall N_0=100; N_max=150; k_S=k_G und k_L=1 (2 Bonuspunkte)
 - 7) Zusatz: Skizzieren Sie N als Funktion der Zeit, für den Fall N_0=100; N_max=150; k_S=1.3; k_G=1.2 und k_L=1 (2 Bonuspunkte)