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FIGURE 1.1. Two lakes are commi
nicating through an underground
channel. The first lake is fed by a
stream, the second drains throug
another underground channel.
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FIGURE 1.2. The current of water
feeding the first lad&as a function ¢
time. We wish to construct a mod
of the lales which allavs us to calct
late how the system reacts to the
changes of the current of water fe
ing them.

Chapter 1: The Storage and Flow of Fluids

The flow of water at the suaice of the Earth seeg as the prime source of our under
standing of phsical processe$Ve can see nature abvk in waterflls, rivers, and
lakes. Technical examples—thatsr supply of homes, heating oil storagajraulic
power plants, or ydraulic control systems—teach us about thgsptal quantities and
relationships necessary for a description of hydraulic phenomena.

In the first section of this chapter we will construct the model of the dynamical pro-
cesses occurring in a system obtaommunicating lakes. Mdout going into the un-
derlying theorywe will simply create a model and simulateViie will see in this
section har we can transform our fundamental ideas about hature verks into
gquantitative models which allow us to actually calculate the outcome of processes.

1.1 A Simple Model of Fluid Storage and Flow

Imagine tvo small lales fed by a single streafrhe lales communicate through an un-
derground channel. The second lake drains through another underground passage into
the open (Fig.1.1). It is kmmn that, during a long period when the stream feeding the

Stream

Underground channel

first lake carries a steady current oter of 10 liters per second, thedés of water
measured from the bottom are 10 m and 8 m, respéctihe surbce areas of the
lakes are 200 frand 400 rh

Rain lets the stream feeding thedalswellAfter each raindll, the current of ater is

found to decrease to 5 liters/s for s short period. It increas@s taga steady value of

10 liters/s after therft rain, and to 9 liters/s after the second rkig.(.2). We wish

to construct a model of the flow and the storage of water which allows us to calculate,
and therefore predict, theater leels in the laks as a result of the changes of the cur
rent feeding the lakes.

A Partial Model: A Single Lake With a Single Flow of Water

We will approach this firsb@mple of a model of a dynamical system by constructing
itin small steps. First, assume that we onlyeghane lak which is fed by a stream with-

out being drained. In otherords, we hee a single container forater with a single
flow. Obviously when constructing a model of this situation, we must create a descrip-

Cover picture: Lake Cleuson near Nendaz in the Swiss Alps; Grand Coulee Dam.
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1.1 A Simple Model of Fluid Storage and Flow

tion which uses containers andik to mimic what we see in realitpur frst step con-
sists of draving a fow connected to a containdfig.1.3)! This diagram represents our

belief that the fiw determines he the content of the container will change. In other_®_> @
words, it represents thaw of balance of amounts of watsgcessary to compute what

is happening in the system. Flow

Volume
We have to introduce abstract quantities which let us specify numerical values associ-

ated with hav much vater is in the la, and hw large the current of ater is in the  FIGURE 1.3. System dynamics di:
course of time. &r the former we simply use tivelume of watefmeasured in cubic grams of dynamical processes st
meters), and for the latter we eawhat is called a current oflax of watemeasured ~ With stocks and flows, representir
. . . . . . system contents and currents of ¢
in CUb'I(% meters per secoqd). FFrg.l..3 the fbw is dravn as a dt arrav Wlifh acircle  gancelile quantities (such as thelx
containing the symba), which we will use to denote currents anés, while the ol- ume of water).

ume of vater contained in the lakat ay moment is represented by a box which is

called a stock. Stocks andvls male up the backbones of the models we are going to

construct in this book.

Now, we have to think carefully about the form of laws of balance such as the one we
just formulated graphicallyso fir we said that—if there is only onevil—the flux de-
termines how the amount ofater in the container is going to change.dctfthe vol-

ume flux of water determinebow fastthe wlume must chang&he formal quantity
measuring howdst a system content changes is calledateeof changef this quan-

tity, and it is denoted by the symbol for the content with a dot writteveabdr hus,

the rate of change of thelumeV of water in the system is written &s If we write

I, for the fux of volume associated with the singlevil of water the lav of balance of

the volume of water of the lake is written in the following form:

V=l (L.1)

celike quantity in the form of a diagram containing stocks adsflas in Fig.1.3, we

can immediately write down the law of balance in mathematical form. / @ \
Calculating the volume of ater in the lak as a function of time calls for solving the \\ C I /
law of balance epressed irEq.(1.1) By the way, this step is called simulating the ~~ / Flow Vo|ume//
model. Havever before we can do this for our miniature model of a lakth one ~——
stream feeding it, we need to kmowo things: fist, the fux I, must be knw for the \
period of time for which we wish to compute the content of the, lakd we hze to ly =0.010m*/s _
specify the amount of ater in the lak at the bginning of this periodThe latter quan- =lv
tity is called thenitial value of the volumeV. For our &ample we will choose a con-

stant flav of water of 10 liters/sTherefore, the complete set of relations specifying ouFIGURE 1.4. A combination of a

model (Fig.1.4) in mathematical terms is stock and fiw(s) represents awaof
balance. Here, this law relates the

flux of water to the rate of change

In other words, whenesr we apress our ideas of the storage and the &if a substan- /;i\ -
~ = ~
s N

V=l the water content. The flow of wa
_ 3 and the initial value of the conten
V(0) =2000m (1-2)  must be specifid for a solution of th

Iy =0.010 m3/s law if balance to be possible.

A Simple Numerical Method for Solving the Equations

We hae to think of a method of solving the set of equations. First, weetbanote that
the solution does not consist of just three numbertsptan infinite number of values

1. Here, we adapt the diagramming techniquevkmérom system dynamics tools such as
Stella to our needs in physics, which are almost identical to the standard system dynamics
terminology.

Part I: An Introduction to Dynamical Processes 3



Chapter 1: The Storage and Flow of Fluids

of the wlume at all points in time in the intexhof interest. In other @rds, the solution
of Egs.(1.2)is the functionVv(t). Now, solvingEgs.(1.2)is not all that dfficult; we
know that the volume of water in the &akhanges as the result of theurfbf water.
Knowing the flix lets us fad out hev much vater has beendiving into the lak during
a small period of time which we caltiene stepAt, namelyi, At. The amount of water
added to the lake (or withdrawn from it) during a spedifieriod of time is called the
amountexchangegdand it is abbreviated by

V, = I At (1.3)

Note that thisxpression is correct only if theuft of water is constant during the time
step considered. If this method of determining tbliwme exchanged is not accurate
enough, we can change either the time Ategr the method embodied by Eq.(1.3).

If we now add this amount of water communicated to the lake to the amount of water

in the lake at the lggnning of the time step, we obtain thelwme of water at the end
of the step:

Vnew = Vold + IVAt (1.4)

This is a simple procedure for solving sets of equations of the type fotd.ifi.2).
It can be implemented in the form of a spread sheet which, in our simple case, can be
set up and computed manually (Table 1.1).

4000 TABLE 1.1.  Spread sheet for calculating the solution of Egs.(1.2).

. Point i t/s I\,(t) / ms Vo / m? V() / md

§ 3000 — from t; to t;,,

g

; 2000 1 0 0.010 400 2000

g 2 40000 0.010 400 2400

§ 1000 —| 3 80000 0.010 400 2800

4 120000 0.010 400 3200

0 T T T T T 5 160000 0.010 3600
0.0E+0 8.0E+4 1.6E+5

Time/s

FIGURE 1.5. The solutionofaset«  Typically, we present the solution of the set of equations in the form of a diagram, i.e.,
equations such as Egs.(1.2) is giv  we displayV graphically as a function of tim&i.1.5).In our kample, the \ater con-
in terms of the volume as a functi  tent of the lak increases linearly with time, which is the result of the single constant

of time. The result can be presen flow of water into the system
in form of a graph o¥/ versug. ’

Before we continuex¢ending the model of the system we will change #tpassion
for the fow of water feeding the lak Let the flix of water increase linearly from 10
liters/s att = 0 s to 18 liters/s at= 160,000 s. The equations to be solved are
V=l
V(0) =2000m? (1.5)

l, =0.010 m3/s+ﬂm3/szt
20000

If we use the same time step of 40,000 seconds as in theyzexample, we will get
the results presented as thedo curve in Fig.1.6lf, on the other hand, the number of
steps is doubled, we obtain a different solution (center curve in Fig.1.6).

4 Fluids, Electricity, Heat, and Motion



1.1 A Simple Model of Fluid Storage and Flow

Our algorithm for solving the equatiortsq.(1.4) only yields an approximation to the

true solution which improves with decreasing size of the time step. (In our first exs 500 Analviical solLtion
ple, Table 1.1, the result is accurate only because the flow is constant.) If we decr_, 4500 _ y
the time step used for the second calculati@ndurther the result will be still more £
accurate. Fig.1.6ompares the numerical solutions with the analytical result calculat & 3500 |
with the help of formal rules. ;
@ 3000
£
E
A Lake and Two Flows S 2500 —
Let us etend the model by assuming that thstflale also drains through a second S S
flow. This assumption is easily tak into account by adding a secormmhfto the stock 0.0E+0 8 0||5+4 16E+5

in the system dynamics diagramF).1.3 In addition, we \&nt to calculate the ater
level in the lake.

Time/s

The second flow is again drawn as an arrow pointing toward the stock, even thou¢-'URE 1.6. Comparison of two

. . numerical solutions of Egs.(1.5)
is supposed to represent a streamatewflaving out of the system. higever, we can ith the theoretical result. The lov
deal with this situation by ging the fux a ngative valueAssume that the irdlv is  er cune is the result found in with
constant an equal to 0.010/s) while the outfiw increases linearly from —0.015/s  time step of 40000 s, whereas the

to — 0.007 r#fs in the first 160,000 s (Fig.1.7 and Egs.(1.6)). onfoig 586 middle is obtained witf
= S.

0.001
ly, = =0.016m3/s+ ——m?3/s?t
va /s* 0000 ™/

—— T —
e /\\K \\ / FIGURE 1.7. System dynamics di:
N N gram of the model of a lalfed by a

< (D—» ‘@»4)—®_ ) stream and draining at the same

/Flow L Vo J Flow2 / time. Here, the law of balance of
>~ \// / e amount of vater contains te flows
= 3/ B e instead of one. Morefr, the model

ly; =0.010m%/s 7
contains a second relation which

/
/ <>—> / . lows us to calculate the level of tF

/‘/Syurfacel led1 /. V=l tly, water from the slume of vater and
\

A, =200m? ~_ e the surface area of the lake.

- b =Vi/A

There is a n@ relation shwing up in the model diagrammed kilg.1.7, namely the

law relating the level of water to the volume and the surface area of the lake. The par-
ticular relation shwn assumes straighestical walls for the lak. After assembling all

the relations and spedaéitions of parameters, the complete set of equations making up
our model of the lake looks as follows:

Vi =y tly,
V;(0) = 2000m®
ly, =0.010m3/s

0.001 (1.6)
Iy, = —0.015m%/s+ ——— m3/s’t
vz / 20000 /
h=Vi/A
A, =200m?

The solution of the set can be obtained with the same basic procedure as the one used
so far. Instead of Eq.(1.4), we now have

Vnew =Voig (|V1 + IV2)At 1.7

Part I: An Introduction to Dynamical Processes 5
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FIGURE 1.8. Numerical solution of
Eqgs.(1.6). Note that the volume o
water in the lake decreases as loi
as the sum of the flows of water it
negative.

FIGURE 1.9. The extension of the
previous model includes an expre
sion for Flav 2 which depends upc
the difference of water levels in tk
two lakes.

Chapter 1: The Storage and Flow of Fluids

Again we can use a spread sheet to do the actual computationthismltyme, the
spread sheet is lger. The time step chosen is 20,000 s as in the second solution of
Eqgs.(1.5). The solution is represented graphically in Fig.1.8.

A More Realistic Representation of the Draining of the Lake

The special model produced s tertainly does not represent realigrywwell: the
flows—especially the one draining the lake—can be specified at random to fit any de-
sired behavigwhich is hardly what wexpect of a model. In nature, processes are de-
termined by other quantities of the system under consideration or by other systems
influencing it. In other words, flows are determined by the model itself.

In our case wexpect the flow through the undeound channel draining thedi lake

into the second one to depend on the circumstances of the syseefiiow must in

some way depend on the difference of the levels of water in the two lakes, and on the
nature of the passage between the &nd on the properties otwer (Fig.1.9). In par-

— ——

N\
k = 0.0050m?/s \/flow constant 1\

Surfacel \  Level 1 lyo = _k(hl - hz)

~ - —

ticular, if the water is at the same level in both lakes we should not see any flow at all.
Since of thedctors listed only the Vels of the vater can change, we will introduce
them in a further refiement of the moderThe properties of the channel and of thee w

ter will be expressed in terms of a constaattor (Flow constant). The simplest possi-

ble relation for Flav 2 is one for whiclh, is proportional to the diérence of leelsh;

—h,, with the flow constark as the multiplying factor:

lyo = _k(h1 - hz) (1.8)

Before we go on to determine the bebaof the n&v model, we can use a general ar
gument to determine the magnitude of the Flow con&taag mentioned in the intro-
duction to this example, it has been observed that the levels of the lakes stay constant
if they measure 10 m and 8 m respeely, and if the stream feeding thesfilake de-

livers 10 liters of ater per second. Mg the lewel of the fist lake can only stay con-

stant if the infbw and the outfiw of water exactly canceThis requirement puts the

value ofly, at — 10 liters/s. For a difference of water levels of 2.& must therefore
be 0.0050 ris:

hy=const O V,=0 O Iy +ly,=0
0 0010m®/s+(-k2.0m)=0
0 k=0.0050m?/s

Fluids, Electricity, Heat, and Motion



1.1 A Simple Model of Fluid Storage and Flow

If we replace Eq.(1.§)oy Eq.(1.8) and add values foy andk, we arrive at the com-

plete list of equations for thetended modeEqs.(1.9) Naturally giving h, a constant Vi=hatlve

value reflects a fundamental flaw in the current model which will only be removed V;(0) = 2000m*
considering the dynamics of the seconetlak wellThis will be done in the né sub- Iy, =0.010m®/s

section. Agin, the equations can be saivby the spread sheet techniqueetizped Iy =—k(h, —,)

before. This time, howevgthe calculations are slightly morevatved. The reason is V2 h b, (1.9)
to be found in theefct that the @iws are not directly speadfil functions of timedt rath- h =Vi/A

er depend upon quantities of the system which themsalre the result of the solution A =200m?

of the model equations. M@ver by progressing step by step in a spread sheet as k = 0.0050m?/s

Table 1.1, the missing values are computed as they are needed. h =80m
, =8.

If we use the values for the kg and the feeding stream as detailedrepae should
get a steady state, i.e., thedks of the laks should not chang€his can be srified by

doing the appropriate calculations.Wwver it is certainly more interesting to doa cal- 2000
culation for which alues are changingssume, therefore, that after a period of stead . .
conditions, the kel of the vater in lale two suddenly drops to 5.0 rAs a conse- & 1800 Analytical solion
quence, the éw from the fist to the second lakwill increase, leading to a decrease of 1600 /
h,. This in turn must decrease the magnitudi,ofwhich will male h; decrease more g
slowly, and so onAll in all we should &pecth, to decrease to avel for which steady ~ § 1490
conditions are attained once more. 5

S 1200
A Complete Model of Two Communicating Lakes 1000 ~+———————
The model of the system of dWwakes certainly cannot be complete without consider 00E+0  80E+4  16E+5
ation of the dynamics of La&k2 (Fig.1.1)This is accomplished simply by adding the Time/s

law pf balance of.Wter for this partia}I system. Lak? is fed by the current ofater FIGURE 1.10. Numerical solution
flowing from the first lake, and it drains through the second underground channel isf Egs.(1.9) compared to analytic
the openTherefore, in a graphical representation of the model, wetozadd another solution. The level of water in the
stock with two flows to the diagram of Fig.1.9. To complete the model we have to first lale reaches a mesteady alue

termine the new flows (Fig.1.11). 8; Zﬁg ?éc%%ig Iilgem abee the one

Since Flav 3 represents theater flaving from the fist to the second lakl,,; must
simply be the negative .. For the flow draining Lake 2 (i.d,,,) we will use a re-

lation \ery similar to the one written fdy,; Eq.(1.8) Here, the ditrence of water lev- FIGURE 1.11. System dynamics

model of two communicating lake

els is equal to the level of water in Lake 2: Note the two stocks and associat
flows which represent two laws of
lya = —kohy (1.10)  balance. Model equations:

V=l +ly,
V;(0) = 2000m?*
ly; =0.010m3/s
Volume 1 lvo :_kl(hl_hZ)

—@—’ ‘E, Vo =lyz +ly,

Flow constant 2

Flow 1 Flow 2 V,(0) = 3200m°

Flow constant 1

Volume 2 lvs ==ly2 (1.11)
CH— C . lva = —kohy
@' h =Vi/A

Surface 1 Level 1 Flow 3 Flow 4 2
A =200m

vz = —ky(ry =h;) h, =V, /A

+— A, = 400m?
Level2  Surface2 k, =0.0050m?/s

lya = —koh, k, =0.00125m?/s

Part I: An Introduction to Dynamical Processes 7



FIGURE 1.12. Behavior of the lales
according to the model represent:
by Fig.1.11 and Egs.(1.11). The c
rent of water feeding the lakes is i
specified in Fig.1.2. Note that the
lakes respond to an increase of tr
flow by increasing the level, but tr
response is delayed; the delay ig#
er for Lake 2. For a steady inflow

which is smaller than the original

one, the laks find ne steady alues
for the levels. The modeling and t
simulation were done with the hel
of Stella Il.

Chapter 1: The Storage and Flow of Fluids

The second Fle constank, may be determined in the samayna;. It is knavn that
steady conditions pvail if the flow feeding the la&s is 10 liters/s, and thevids are
10 m and 8 m, respeetily. For the steady state, thewis with respect to a res@iv
hawe to balanceTherefore, we hee I\, =\, = l\;53 = I\, (for the magnitudes of the
fluxes). From this we conclude that

hy=const O V,=0 O Ily3+l,,=0
0 0.010m*/s+(-k,B.0m)=0
O k, =0.00125m?/s
The model is completed, and we can sdlve equations. Basicallhis works as be-
fore, i.e., we can use the spread sheet technique. Except for the number of operations

to be performed, the computational technique is the same. It simply has to be applied
to two laws of balance:

Vi new = Ve oid +(|v1 + Iv2)At

(1.12)
Vo new = Vooid + (|v3 + Iv4)At

Computations can be performed with all sorts of initial conditions ocovisfl In
Fig.1.12 the solution of the problem stated at thgibeing of the section is shown in
form of cunes. The flav of water feeding the las is as specdd in Fig.1.2and the
response of the lakes can be read from the curves representing the water levels.

15 : : : 0.06

Level /m
Inflow / m¥/s

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Inflow !

0 ' ' ' 0
I I I

0 200000 400000 600000 800000

Time/s

What Does the Model Teach Us About Hydraulic Processes?

Take a closer look at what weeassembled on the pieus pagesThe &ercise
should tell us much about the problem gtifaulic processes. Essentialtijere are
four types of relations to be found in the model that was constructed.

We started the modeling process by expressing our assumption that flows of water are
responsible for changing the amount aiter in each of the laks.The formal rules be-

hind these relations are called laws of balance. They are the general laws which relate
processes (flas) to what happens to a system (changes of coritémtlill study lavs

of balance a little more closely in Section 1.2.

Fluids, Electricity, Heat, and Motion



1.1 A Simple Model of Fluid Storage and Flow

To flow through the underground channels, water needs a driving force. We know that
pressure dferences are the cause of tlwlTherefore we hee to investigate pressure
and pressure differences, and their role in hydraulic systems (Section 1.3).

Pressure ditrences anddivs are related. In the case afidls, the relationship may
depend upon the channel and the properties of tidsfl\e therefore hae to learn
more about how flows depend upon driving forces (Section 1.4).

Since we belige that the pressure fifences are responsible for forcing thatev
through the undground channel between them, and since some of the presfere dif
ences in the system depend upa@iex levels in the las, we should be able to calcu-
late these Mels. Naturally they are related to the amount oater in a lak and the
shape of the body of the lake (Section 1.5).

1. If you had to take into account evaporation of water from the surface
Lake 1—at a constant rate proportional to the surface area—how wc

you have to change the model diagrams in Figs.1.7 and 1.9? Q

2. Does the addition ofvaporation change the nature of the relationshij
between volume, surface, and level (Fig) bi7between fw and differ-
ences of levels (Fig.1.9) in any way? Does it change the behavior of the
system?

3. Consider tvo communicating laés without infbw and outfbw. When does the current ofw
ter between them stop? What condition is attained when nothing changes anymore?

4. Can you think of a numerical scheme which yields accurate results for the problem of
Eqgs.(1.5)? Would this scheme yield accurate results for more general flows?

5. What is the graphical representation of the relation betweenathd diference of leels
used for the models siwa in Figs.1.9and1.11? Do you &pect the relation betweerofl
through a channel or pipevadys to be of this form? Do you knahe equialent diagram
used in electricity?

1. You first have to add another flow representing evaporation to the st
ture of stock and dlvs in the diagram(s)lhe you hae to epress the
flow as the product of some constant and the quantity Surface 1. A

2. The particular lavs from which we calculate theviels and the fiws
hawe nothing to do with he mary flows there are in the structure of
stocks and éiws. Howeverchanging the éws naturally changes the be-
havior of the system.

3. Connecting dférent types of containersnays leads to the same result: in the end, tledde
of fluid must hae become equarhis is refected in our model: we can sedEgs.(1.11) that
the flowly, (which is the same dg;) stops when this condition is met.

4. For Egs.(1.5) we could choose a method which uses the values of the flows at the beginning
and the end of the time stApand calculates thearage alue. Multiplying this serage fow
for At by the time step yields a correctlwe for the wlume of vater excchanged as long as
the flows are linear functions of timeoFflows which are more general functions of time this
scheme is again inaccurate.

5. A graph ofl,, versus the difference of lels yields a straight line going through the origin of
the graph; you can see this by inspecting the equatidg,fEq.(1.11)). We only get this
linear form if the fow is independent of the channel or pipe, and thid firoperties. In elec-
tricity, the equialent graphs are callédJ (current-voltage) cums or lines. (See Chapter 2).

Part I: An Introduction to Dynamical Processes
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FIGURE 1.13. The wlume of a flid
stored in a system changes in time
the result of a dynamical process.
The graph o¥/(t) lets us visualize
most easily what is happening to i
guantityV.

1 2 t
FIGURE 1.14. We can readalues of
V for specifc moments directly fror
the graph. Also, the change\gfab-
breviated byAV, can be read bthe
vertical axis.

FIGURE 1.15. The quantity measu
ing how fast the volume changes
an instant—called theate of change
of volume—is visualized by how

steep the curve is. This in turn is «
termined by the slope of the tange
to the curve for a given instant.
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1.2 Balancing Amounts of Fluids

Storage and flow ofdlds are at the heart ofdiraulic phenomena. Since thevil of a
fluid is responsible for the change of the amountuid ftontained in a system, there
must be a relation betweeniils and these changes; the relation is callesvaf bal-
ance The art of balancing amounts o&ter requires us to introduce abstract quantities
with which we measuredivs and amountdLhen, related quantities are defil and
with their help the l& of balance isxpressed. Here we will get to kma graphical
method for dealing with the relations between flows and change.

System Content: Volume and Rate of Change of Volume

We need an abstract quantity to measure the amountwél@dintained in a system.
Nature ofers three measureamount of substanc&hich used by chemistmass
which is mostly used by mechanical engineersvatame Under the simplest of eir
cumstances these measures are related by corsttonsfmaking them practically
equivalent. If there are no chemical reactions, and if td f§ incompressible, i.e., if
the volume of a given amount ofiitl cannot be changed, thecfors relating amount
of substance and mass, and mass ahdne, are constantoFreasons of simplicity
we shall mostly choose th@lume of the flid as the measure of its amount. Since it
is of interest as well, we shall sometimes use the massuifl avthen convenient. The
relation between mass and volume is

m=pV (1.13)

wherep is thedensityof the fluid. We measure volume irf,mass in kg, and density
in kg/m?,

Since we are dealing with dynamical processes, sheme of fuid in a system must
change with timeTherefore, we do not need only singédues of this quantityRather

we are interested in tivelume as a function of tim8uch functions can be represented
in various vays such as equations, tables, and graphs, where grapbg tta@clearest
image of the quantity as it changes in the course of time (Fig.1.13).

Chang e and rate of ¢ hange . The graph oY¥/(t) also contains all the other information
important to a description of what is going on with the amounuaf 8tored in the
system. First, we can read fromawes ol for specifc moments in time. Second, we
can determine the change aflwme for a gien period of time lasting from to t,
(Fig.1.14). Thlifference of voluméor two points in time is defined as

AV =V, -V, (1.14)

Itis aways the lateralue minus the earlier one; also, it is independent of what happens
to the volume in the time span between the two instaatsdt,. Third, and most im-
portant, the graph also tells isw fast the volume is changiagany given moment.
Obviously the graph of/(t) also contains this information. If we look at the @urep-
resenting theaume as a function of time we can sewtastV is changing from ho
steep the cuwvis at that point in timé&he steeper it is, thaster the change. Now we
use the graphical representatiorVab define what we mean Ipw fastthe quantity
changes. W can measure hosteep the cuevis at a point by dwéing the tangent to
the cune (Fig.1.15 and determining the slope of this straight lifleeslope of the tan-
gentis said to measutbe time rate of chang# the quantityv at the gien point. The
slope of the tangent can be determined frognrantangular triangle with horizontal
and vertical legs having the tangent as the hypotenuse. It is giviplt* as seen in
Fig.1.15 and has units #fs. As mentioned before, the rate of chang®/ @& denoted
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1.2 Balancing Amounts of Fluids

by the symboV. There are other methods of determining the rate of chang&arin vV
the knowledge o¥/(t)—such as numerical and formal onesat-this one is the most
easily visualized.

A simple numerical method to determine the rate of changawie is the follaving.
Assume that we know the values\bat as many pointsas we wish. We may know a
formal representation of the function—an equationVigy—or we may hee a table
of values with may entries for firely spaced points in tim&he method also can be
explained in graphical term&ig.1.16. Imagine tvo points separated by a small inter

val At. The associated values\ofire supposed to be known. We can approximate the t
slope of the cum in the narrer intenal by the' line conpectlng the dwpoints on the FIGURE 1.16. The slope of a cus/
curve (the secant). The slope of the secant is determined easily: can be approximated by the slope
a straight line connecting two neig
AV _V, -V boring points. The smaller the inte

™ G-t (115 valAt, the better the approximatio
The quantityAV/At is called theaverage rate of chander the interal At. In a table
of values theerage rate of change is determined easily for each aht@ereording to
the rule of Eq.(1.15)Because of the similarity with calculating the ratio of théedif
ence of wlume and a time spdx, we also use the symba\V/dt for the rate of change
of volume:

V = dv/dt (1.16)

Naturally the rate of change dfcan be determined for wpoint in time for a smooth
cune. If we do this graphically as described before for a number of points, we ¢ .
transfer the values alV/dt to a table from which we can create a graph of the rate ¢V 4

change (Fig.1.17).
Calculating the volume from its rate of change . We have just learned how to calcu- \\

late changes ofolume and the rate of chand®/dtfrom the information contained in \L/ g
V(t). We can also perform theverse process: if we kaothe rate of change, we can

calculate changes of volume. A diagram shows how this works. First, we consider
case of constant rate of change. In this case the changkiofermust be equal to the

product of rate of change and time spn FIGURE 1.17. The rate of change «
volume is itself a function of time.

. can be found graphically from the

AV = VAt (1.17) curveV(t) by drawing several tan-

gents and determining their slope

Graphically speaking\V is equal to the area of the rectangle between the straight liNote that the rate of change is ne
V(t) and the—axis with widthAt. (See the left diagram &ig.1.18) In general, for ar ~ tive for sections o¥/(t) whereV is

bitrary functionsv(t), we hae to determine the area between the €\(t) and the— decreasing, i.e., where the tanger

sloping.
axis in the chosen time intev (See the diagram on the rightag.1.18) One approx- ping
imate method of determining the area bounded by a curve is discussed below.
V4 v FIGURE 1.18. The change of vol-
ume can be determined from the
AV AV gram ofdV/dtas a function of time
. - In general, the change fin time
At Vt At t spanAt is equal to the are between
the curve oiV(t) and the-axis for
the time interval.

Assume that a process speaxsfihe rate of change of thelwme of a fliid as a function
of time. From this we can recreate tldume as a function of time if we also kmthe
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FIGURE 1.19. An area between th:
cune representing the rate of char
of volume and thé-axis in an inter
val At yields the change of for the
particular interval. By dividing the
time axis into many small interval
and calculating the areas of narro
rectangles, we can constrit) if
we know the initial valud/,.
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value ofV at the bginning, i.e., the initial alueV,. The procedure arks as follavs
(Fig.1.19).In the diagram fodV/dt choose a (small) time stép and determine the

V A V A
-~
™~
™~ AV
At -
t Vv, \\ I\
At -
t
V A VA
T
At t v \\ AV
° At

Y

—

area of a rectangle with a height equal to thezage alue of the rate of change for the
first interval. This approximately represents the changdéedfringAt:

AV = VAt (1.18)

(Note that this equation returns the corredtie of the change &f only if the wlume

is a linear function of time.) N@ mowe to the diagram which will contaw(t) and in-
dicateV, on the ‘ertical axis. Then mavhorizontally and ertically by a distancat

andAV, respectively. Repeat the process for consecutive rectangles in the diagram for
dv/dt and you will trace an approximation to the functit).

1. What is the meaning oflume, change ofalume, and rate of change of
volume? How can you determine the rate of change @)

2. How do you calculate the change @lwme for a time span if the rate of
change is known? What additional value needs to be known if you w
to determine the volume as a function of time?

3. If the rate of change oblume is negati®, what sign should the area be-
tween the curve afV/dtand the-axis have?

1. Wolume measures the quantity of aidlinside a system; the change o’
volume is the ditrence of a &lue of volume at, and one at an earlier
timet,; the rate of change measuresvtfast the volume is changing in A
a process. The latter is equal to the slope of the tang¥(t) to

2. The change ofalume is equal to the area between the edi/dtand
thet—axis for the intervaht. In addition to the rate of change as a func-
tion of time we need to know the initial value of the volume.

3. For negative rates of change, the curve is below the axis, and the change is negative.

Fluids, Electricity, Heat, and Motion



1.2 Balancing Amounts of Fluids

EXAMPLE 1.1. Graphical determination of rate of change of volume.

The volume of water in a lake is known in graphical form as a function of time. a) Determir~
the mass of the fluid at t = 6.041€ b) Determine the rate of change of the volume for a few
points by graphical means and transfer them to a gragi¥i/dfversud. Is there a simple func-
tion which fits the points? c) Explain the meaning of the different sigd¥g/af, and of the min-
imum of the curve/(t).

SOLUTION:a) The mass for a given volume is calculated with the hélg.¢1.13) The density
of water is 1000 kg/f With a volume of 1750 fread off the graph we get

Volume of water / m3

m(t =6.010%s) = pV(t = 6.010*s) =1000kg/m* [1750m* = 1.7510°kg

0.0E+4 8.0E+4 1.6E+5
Time/s

b) Draw tangents to the curve at a few points as carefully as possible. For th¢ oiesathe
slope is determined as follows: for a base linatof 9.0-10s, the change of is AV = —500

me. This yields a value of 5.5-10%m?3s. A straight line seems to fit the data points in the secona
graph very well.

2500 0.0050

0.0025

2250

2%3
|

0.0000

>r<p ~0.0025 /
L L

1500 —0.0050 t
0.0E+4 8.0E+4 1.6E+5 0.0E+4 8.0E+4 1.6E+5
Time/s Time/s

Volume of water / m3
dv/dt / m¥/s

1750

c) The volume decreases for the first 1.3si@brresponding to negative values of the rate of
change. After this, the volume increases which means that the rate of change must be positive.
At the point in time wher¥®(t) has a minimum, the rate of change is zero.

EXAMPLE 1.2. Finding the volume from the rate of change.

The rate of change of volume of water in a lake is as shown in the figure; it increases linearly
from 0.0025 ri¥'s to 0.0075 s in 1.60-10s. Determine the volume analytically as a function
of time. The initial value i¥, = 1000 n3. 0.0100

SOLUTION:We can easily solve the problem formally since the rate of change is a linear fui
tion of time. Therefore, we can find the corresponding formula for the area betwistand 0.0075
thet—axis. This area represents the change of volume from 0 s to

The rate of change is the following function of time:

dv/dt/ m¥s

V(t)=a+bt , a=00025m%/s , b=3125M10°m?/s? 0.0025

0.0050 ———
T T

T
[
[
[
[
[
[
[
'
"
'
[
[
I
o
[
[
[
[
[
T
[
[
[
[
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[
T T

The area to be calculated is that of a trapeze going from @ Fhe volume at t is found by
adding the initial volum&/;:

0.0000
0.0E+4 8.0E+4 1.6E+5
Time/s

AV(t)=%(V(O)+V(t))At=%(a+a+bt)t:at+%bt2 0 V(t):V0+at+%bt2
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FIGURE 1.20. Examples of fixes a:
functions of time. A flux measures
the magnitude of a flow at a giver
surface where the sign of theifl de
notes the direction of flow with re-
spect to the orientation of the
surface.

Current
_
T e
— 1 — 5 Norma
vector
Surface

FIGURE 1.21. Examples of fixes a:
functions of time. A flux measures
the magnitude of a flow at a giver
surface where the sign of theifl de
notes the direction of flow with re-
spect to the orientation of the
surface.

FIGURE 1.22. The same mathemg
cal operation which is used to cal
late changes of volume also yield
the volume exchanged with a cur:
rent. Instead of the rate of change
have the flux as a function of time
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Flows: Currents and Amounts Exchanged

Volume and rate of change aflume are the quantities thateao do with the system
content only For a complete description of dynamical processes we alsothebe
able to describe the interaction of the system with tkie@ment which is done with
the help of the flows of fluids.

Flows, currents, fluxes . Flows of fluids are easily visualized. When we stand next to
streams andvers, or pipes leading into fountains, we can get a good feeling for the
magnitude of a currenF{g.1.20).The abstract quantity measuring a current is called
aflux A flux of volumes given the symbdl,, and its units are #s. Fluxes are mea-

IV |\/ A Iv

—~ Y
— Y
—

sured at sudces cutting through current$e suréce is gien an orientation indicated

by a \ector perpendicular to the sack area, and aofl going in the direction of this
vector is given a positive flux (Fig.1.21); anlgoing in the opposite direction is mea-
sured in terms of a negative flux. Note that the closed surface of a body or a region of
space can bewgn an orientation either oustnd or invard.There are dferent customs

in this respect. Bfsicists and mathematicians oftendake outvard normal as the
positive direction, in engineering it often is the inward direction which is given a pos-
itive value. Vi shall choose the latter a@mtion, which means that theXlassociated

with a flow into a system is counted as a positive quantity.

The quantity exchang ed with a fl ow. Knowing the flix of a current of lid allows us
to calculate hev much is fowing across a suate in a gien time span. If thedk is
constant in time, this is particularly simpléhe quantity/, exchange with a current of
volume fluxl,, is given by

Vo(t, - t) = 1 At (1.19)
If the flux is \ariable, the determination of the amouxtleanged is performed ixe
actly the same mannerwwave determine changes dflume from the rate of change
(Fig.1.18). ¢ simply hae to drav the fux as a function of time and calculate the area
between the curvig(t) and the-axis for the period of time considered in the problem
(Fig.1.22).

Iy 4 Iy

At ¢

Measurement of fluxes . There are several ways of measuring fluxes of fluids in prac-
tise. The simplest,ui not necessarily the most enlightening, is fis.can let a cur

rent flav for short amounts of timeyery time measuring Womuch vater has been
transported. The amount transported divided by the time span used yields an approxi-
mate alue, i.e., thewrage wlue, of the fix. There are more directays, however, to
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1.2 Balancing Amounts of Fluids

measure afix in the laboratoryCertain sensors directly detect thafbf a fuid, rath-
er than amounts transported. One su@n®le is a sensor using the principle of elec-
tromagnetic induction (Chapter 33).

Accounting: The Law of Balance of Volume

Storage and dlv are the tw phenomena which combine to neadlynamic processes
possible. We know that thergists a relation betweerofivs of a fluid with respect to
a fluid store and he the wlume of the flid is changing in that storagewvitee. This

d st ) ~4 SYSTEM
relation is called théaw of balance of volum@f a fluid). aV/dt

Vi

Experience tells us that all thewvls together are responsible for the change of th lys
amount of flid in a storeThe lager the sum of all currents, thaster the volume of | /
fluid must change. This observation may be summarized as follows: V2

LAW OF BALANCE
B The sum of all fixes with respect to the store tells usvifast the stored

. . . Processes
amount is changing. In formal terms, this means that the rate of change of Systemcontent ~— (Fluxes)
volume of a system must be equal to the sum oftedefl of volume with
respect to the system:

N
d_V _ z | w20 Volume
dt - Vi .
i=1 ( ) s @V . ( )
| [
Alternatively, the lav of balance of @lume also can bexpressed in terms " "
of the change ofalume and the netolume exchanged as a result of the
fluxes:
N Iy
AV = Z Vg (1.21)
i=1 FIGURE 1.23. Laws of balance cor
bine the two sides of dynamical p
This form holds for a certain time spat) whereas Eq.(1.20)olds for ag cesses: storage and transport
moment in time. processes. They tell us how the p

cesses—expressed in terms of flt
es—determine what is happeninc
the system content—expressed i
There are searal important points to be noted aboutva tf balance such as the one terms of the rate of change of the
in Eq.(1.20): content. The lower part of the figL
is the system dynamics represeni
tion of the law of balance.
» The fluxes of currents dwing into and out of the system (and the associated

amounts which are exchanged) have to be given the proper signs: positive for
inflow, negative for outflow.

» Alaw of balance is not a deition of a currentdV/dtis nota current,. In
fact,dV/dtis not @en the sum of allfixes (it is not identical to the sum of the
fluxes), its value is onlgqual tothis quantity.

» A law of balance can be used inaways. First, if the sum of alldkes is
known we also kne the rate of change of the system content. Second, if the
rate of change ofolume of a system is kiam, and if we kner all but one cur
rent, the missing flux can be calculated.

» By itself, a lav of balance is not of much use. Only if it is combined with spe-
cial knowledge about the fluxes can it be used for calculations.

» The law containing the rate of change and thiedk is called thimstantaneous
form of the lav of balance; it holds fonvery moment in time. Its counterpart,
i.e., Eq.(1.21), is called thetegratedform of the law.

Part I: An Introduction to Dynamical Processes 15
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1. Why isnt a current a rate of changéhy isn't the volume exchanged a
change of volume?

2. Describe the current whoseiflis shavn in the second diagram of Fig.
1.20. What does a negative flux mean?

3. The rate of change oblume is knavn. What does this tell you about the
fluxes?

1. Acurrentis a fundamental quantity introduced for describing a transg
processA rate of change is a quantity which describes a system anc
content. The same can be said about the integrated quantities. A

2. First the magnitude of the current is constant, and daeid in the di-
rection indicating the orientation of the sacé are through which the
current fows. Then the magnitude decreases lineafer it has be-
come zero, the flux becomes zero, i.e., the flow reverses its direction.

3. If the rate of change is known, only the sum of the fluxes can be determined from the law of
balance. Information on single flows must be obtained by special laws for the flows.

EXAMPLE 1.3. A simple case of balancing the volume of water.

Consider a water container with an inlet and an outlet. The flow at the inlet is constant and equal
to 10 liters/s. The volume is known to change at a ratel&fliters/s. a) Determine the flux of
volume associate with the outlet; express it in terms of the flux of mass. b) How much water is
exchanged with the current flowing out of the container in the first minute? c) Determine the
volume as a function of time. The initial volume is 28 m

SOLUTION:a) The law of balance of volume in its instantaneous form lets us determine the
missing flux:

V=l +ly, O ly,=V-l,=-1300°m%/s-1000°m?/s= -23010° m?®/s
l,=ply, O I,,=1000kg/m? E@—ZSIZLO’3 m3/s) =23kg/s

b) The amount exchanged is calculated according to Eq.(1.19):
V,, = ly,At = -23107° m*/s[60s = -1.38m*
¢) The change of volume can be calculate in a couple of ways. The most direct is

V(t) =V, +AV, , =V, +V(t-0)=20m* -1310° m?/sM

1.3 Pressure and the Hydraulic Driving Force

Normally, water or oil would not flow by themselves. This simple observation means
that other processes are responsible foirdyithe one we are interested\ivie say that
they set up a driving force for the fluids to flow.

Fluids, Electricity, Heat, and Motion



1.3 Pressure and the Hydraulic Driving Force

Examples of Driving Forces
Open container

—

To be precise, there aredwhings fuids do not do by themsels here at the sade
of the Earth: the do not fow uphill, and thg do not fow horizontally through pipes
and channels, if unaided. In the case of horizordal fie say that fluid friction is the
reason why a flow must be forced (Section 1.4).

There are searal concrete circumstances or setups which are used to faccédiv
where this is necessamyn nature, we obseevmostly tvo cases. First, ater flows
downhill—aided by gravity—leading to other flows. Second, in the atmosphere, aree
of high pressure build up and the air flows to locations where the pressure is lower. <
technical settings we can use containers where the pressure is higher at the bottorr e
the flid, pressureeassels, and pumpBi@.1.24). These obsetions suggest that pres-
sure diferences are the cause afifl flow which would not tale place otherwise.
Again, the @ample of tvo communicating €lid tanks is most helpful in ceimcing us

of this. (See thert two entries inTable 1.1in the Introduction.)he fluid will only
flow through the connecting pipe if there is dadi#énce of levels (pressures) from one
end of the pipe to the othd@he process ofdiv stops when the pressurefdience has
become zero.

Pressure vessel

FIGURE 1.24. For the fluid to flav
The Pressure of Fluids through the pipe from to B, the

. . . . ressure has to be higheraf con-
Pressure is one of these fundamentghsjgal quantities for which we 1@ good &- Fainer with fluid. a pregssure vesse

eryday knowledge. We kmothis quantity from the atmosphere and theetakn the  (containing a fluid a high pressure
atmosphere, pressure changes from point to point, andes & pressure of theaw or a pump can be used to set up ¢
ter increases dowrard. Pressure is a quantity describingdrhulic state of adid at & pressure difference.

every point inside.

Pressure is measured in Pascal (Pa). Going vertically down in the water of a lake here
on our planet makes the pressure increase by abb&al(Fig.1.25). The pressure of

the air in the atmosphere is around P@ at sea level. The pressure increases linearly
downward in an incompressible fluid. A proof will be given in Chapter 29:

P=P, +pgz (1.22)

P FIGURE 1.25. In incompressible 6l-
ids at the surface of the Earth, the
pressure increases linearly down-

;=0 Fa ward.P, is the ambient pressure (
P, > pressure) at the surface of the lak
z

Here,g measures the strength of the gravitational field. Fluid levels in vertical and U-
tubes make for one of the simplest devices for measuring pressures (Fig.1.26).

FIGURE 1.26. Tubes filed with lig-
uids such as water or mercury se
Ah as measuring devices for pressur

Y|t ah There is no air above the fluid in t
= closed section of the U-tube.

P=P, + polhy
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Chapter 1: The Storage and Flow of Fluids

Pressure Differences in Hydraulic Circuits

If we want to be able to specify the conditions for thesfof fluids we must be able to
determine pressures and pressure differences along the paths taken by the fluids. Take
as an example the hydraulic setup shown in (Fig.1.27).

FIGURE 1.27. Knowing pressures
and pressure differences along flc
is very important in modeling hy-
draulic systems. Here, a few poin
have been indicated along the flu
paths. The pipes are openfatnd
D*, as is the tank. The tank idd
up to the level indicated by poibt
The graph next to the picture dis-
plays a qualitative gtch of the pre:
sure at different points in the fluid
The air pressure is taken to Bg

> Position

A B c D
D*

A fluid such as oil iws fromA to B through a pump, from there through atfipipe
and into the tanlAt C, the pipe branchesfpfind there is a second pipe at grounedlle
leaving from pointC.

We want to determine thealues of the pressure at the points indicated in thedi

First, note that the pressure must be equa) B, andD*, since there theuld com-
municated with the air and has the same pressure as the surroundiyy &ir fact,

we can imagine a closegdraulic loop fromA to B to C up toD and back through the

air toA. Naturally, we expect to be back at the same hydraulic level, i.e., the pressure,
once we have completed the lodjnen there is a second branch fr@no D* which

is in parallel to the one fro@ up toD in the tank. Therefore, there is a second closed
loop fromA throughB, C, D*, and back té\. We can egn identify a third closed loop

from C to D, and from there via the air @@*. From what we hae said we xpect an
important rule to hold for closed hydraulic circuits:

B No matter hav simple or hav complicated a closed loop, the sum of all
pressure differences between points along the loop must be zero:

N
0= ZAPi (1.23)

i=1

We will find an equialent rule which holds for electric circui®here it is
called Kirchhoff's second rule (Chapter 2).

—» A=E
APpp

Now let us hag a closer look at thegments of the paths in ouxample. The fluid is
FIGURE 1.28. Pressure diérences - .
along a closedywraulic loop add u taken up—m_aybe frqm a s_haH/ocontalner rposed to the air—at pressurg If the
to zero. A blue arrow pointing in tl sggment of pipe leading t#& is short, we xpect the pressure Atto beP, as well. The
direction of flow denotes decreasl  purpose of the pump is to increase the pressure ofuildetdl a value aB such that it
pressure, one going againstthe ¢ can flav as it is supposed tAfter B, the pressure of theuftl is expected to drop be-
rent denotes increasing pressure cause of kidraulic friction in the pipe leading ©. FromC to D, we go ‘ertically up
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1.4 Currents: Driving Forces and Resistance

in a fluid column. Since the pressure increases if we go down in a fluid, we know that
here the pressure must drop once more, this time back to air pr@$susame drop
of pressure must occur fro@ito D* because &@D* we are back &®,. We recognize

that the pressure differences in parallel branches must be equal.

1. A deice such as the U-tube Big.1.26—filled with mercury—makes a
simple tool for measuring air pressure. If the pressure of the air is C
bar (1 bar equals 2®a), hav high should the mercury column on the
left rise compared to the one on the right?

2. How lage is the pressure drop framnto D* in Fig.1.27? PoinD is at
heighth abowe ground, and the density of theid is p. Which laws or
relations are necessary for determining the answer?

1. Since the pressure is equal at equalein the mercury, the pressure a
depthAh in the left column must be equal to the pressure of thevahr
a density of 13,600 kgfnwe getAh = 0.67 m. (Withg = 9.81 N/kg.)

2. According to the loop rule igq.(1.23)the pressure diérence fronC to
D* must be equal to the one fratnto D. Finally, with Eq.(1.22) we
haveAP-_p = —pg|Ah|. Note that the difference is negative.

Q

A

1.4 Currents: Driving Forces and Resistance

The pressure can change for numerous reasonsuii adfhe of which is glid friction.
When fluids flav steadily and horizontallyt is found that the pressure decreases in the
direction of flow (Fig.1.26 on the right).&\say that a pressure gradienilds up as a
result of hydraulic resistance when a flow is forced through a pipe (Fig.1.29).

Current—Pressure Characteristic Curves

We expect a relation between thelume fux through the pipe and the pressure drop
across the length of the pipe. Naturathis relation should be dérent for diferent
circumstances. It depends upon thedfproperty which leads to fluid friction, on the

0.016 . .
| & : :
‘€ 0012 : /
— 0 % : E
D=2r % 0.008 . -
= / !
=) 1 1
P — P,<P, S 0004 / /
AP <0 ; :
0.000 | i

0.0E+0 1.0E+5

2.0E+5

Pressure difference / Pa
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FIGURE 1.29. |,,—AP characteristit
curves for different steady flows
through the same pipe. (Length: 1
m, radius: 0.020 m.) The lower
straight line is for adirly viscous oil
(viscosity: 0.20 Pa-s, density: 80C
kg/m?) for laminar flow.The upper
two are for water (viscosity: 0.001
Pa-s) for turblent flow. The curve i
the middle is for a rough pipe, the
per one for a smooth pipe.
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size of the pipe (length and radius), and the type of flow (laminar or turbulent, or flow
through a sand filled pipe). The relation can be displayed in diagram showing volume
flux as a function of pressure drop. It is called\aAP characteristiccurve

Driving Force and Hydraulic Resistance

Fig.1.29shavs three gamples ofl,— AP characteristic cum for liquids fbwing
steadily through a pip&here is a simple graphicay of describing the relationship
between flix and pressure drop. Since the phenomenon is caused by friction which
makes the pressure difference necessagysay that the current is the result of the in-
terplay between driving forceand aresistanceThe larger the driving force, i.e., the
pressure diérence, the lager the flix, and the layer the resistance the smaller the cur
rent. Alternatively instead of talking about a resistance, we can introdwom@duc-
tance The current is imagined to be the result of &idg force and adctor telling us

how easy it is to transfer the fluid. This image may be expressed as follows:

B If fluid friction leads to a pressure drop in the directionaf,flve may
express the current ofuild in terms of the dving force, i.e., the pressure
difference along thediv as a result of friction, and adtor called theon-

ductanceG,;:
ly = -GyAPg (1.24)
or, equivalently
1
ly = —R—VAPR (1.25)

whereR, = 1/G,, is the called théydraulic resistance

AP is the pressure drop (in the directionlofv) as the result of the resistancevidb
ously, the resistance is measured in P&:s/m

We can nav answer the question if there are conditions in horizontal stemdwfiere
there is no need for a pressurdatiénce as a diing force. Vi can see froriq.(1.25)
that the ldraulic resistance auld hare to be zero. Fluids with this property do not
exist, but we can at least imagine them. Such fluids would be @diald

Note that the 6w which has a linear characteristic ceiim Fig.1.29(the lovermost
straight line) has a constant conductance or resistance, while for the aiHwsy
the resistance varies as a function of the difference of pressures.

Production of Heat in Flow With Friction

The pressure may change inadifor maty different reason3.herefore it is important

to characterize the phenomenon described in this section more caféfatlyve note

that the pressure @#rence in the direction ofdilv is neggative—the fluid flows “down-
hill”. This, however, does not suffice for a complete physical description. Fluids flow-
ing from points of high to points ofwopressure may be found infdifent situations
such as fiw through turbinesSection 1.6)Also, a pressure drop may result in the
speeding up of a fluid (Chapter 3).

In resistive flowon the other hand, the only consequence of the process is the produc-
tion of heat. Therefore, we may say that fluid resistance is associatetlssiflation
(another term for production of heat; see Chapters 8—10). Consegjigkyatiyliids do

not produce any heat when flowing.
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1.4 Currents: Driving Forces and Resistance

Laminar Flow and the Law of Hagen and Poiseuille

The type of fbw has a strong inflence upon the relation betweemxfland pressure
drop. (See the graph in Fig.1.29.¢\Whall restrict our attention t@W through pipes
with constant diameteand to steadydiv. Steady means thabfl properties do not
change with time. In an empty pipe, theaflof a fluid is laminar if the fiw speed is
low. By the way, the average flow spegdor a cross section is related to thexfby:

ly = Av (1.26)

Laminar flav is most easily obseed in the fist fev centimeters of smakrising from
a burning cigrette. If we could see stream lines wand see that theare all parallel;  TABLE 1.2.

Viscosity at 20C

put differently, adjacent paaks of the flid do not mix. If the speed ofofk is in- .
creased, there is a reladly sharp transition to tudbent, chaotic motion where theifl Fluid
id is vigorously mied. If everything else is épt constant, the onset of tutence

Viscosity
nlPas

depends upon the viscosity of th&dl: the more viscous, the longer thafistays lam- Castor ol

0.99

inar. Water has such avoviscosity that its iw through an otherwise empty pipe is :
practically turbulent all the time for reasonable values of the speed of flow. Some yalycerine

1.48

ues of the viscosity of different fluids are listed in Table 1.2. Olive oil

0.081

Experiments she that in laminar fiw the relation betweenuk and pressure drop is | Mercury

0.00155

linear as shan in the laver line inFig.1.29.The conductance ixpected to depend | water

0.00100

upon the radius and the length of the pipe, and the viscosity oluitielfideed, we
should epect it to increase with the formemd to decrease with the lattelotWwhe
concrete ®pression which holds in this case is called#weof Hagen and Poiseuitle

4
7
= (1.27)
v anl

Here,n is the viscosityandr andl are the radius and the length of the pipe, respecti
ly. A derivation of this relation will be given in Chapter 29. The relation of Hagen and
Poiseuille shows that a fluid with a viscosity equal to zero would be ideal.

Turbulent Flow

In the flow of fluids through pipes, turlence occurs if a certain combination afidl
speed, pipe diameteand viscosity of thedid surpasses a criticahle. For a given
pipe and flid, therefore, the speed adl is the decisie factor. For turbulent flow, and
for the transition from laminar to twkent conditions, circumstances are much more
complex. er one, the relation betweentland pressure drop now also depends upon
the roughness of the pip&/e will not go into details here which are of great interest
in engineering. In general, relations are presented in graphical or tabular form.

0.016 - -
@ : 5
‘E 0012 : :
E | |
1. Devices such as pumps also hiyeAP characteristic curves: all other é 0.008 ' '
factors lept constant, thediv depends upon the pressurefatiénce 3 !
across the déce. Would it male sense to introduce a resistance to d = 0.004 : :
scribe the phenomena associated with such devices? \
2. A pump is fited to the smooth pipe described-ig.1.29. Water is to be 0.000 ‘ ‘
pumped horizontally through it. The pump hasltheAP characteristic 0.0E+0 1.0E+5 2.0E+5
curve shavn in the upper graph ¢fig.1.30. What alues will the pres- Pressure difference/ Pa

sure differences and flux in the system take?

3. In laminar fow, would two identical pipes in parallel or one pipe with the cross section df!GURE 1.30. Characteristic cue/

two have the smaller resistance? of a pump.
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1. No, it does not makany sensé resistance is introduced to describe th
effects of friction upon the flow, an effect which leads to the producti
of heat.These phenomenav&nothing to do with what happens in ¢ A
pump of in a turbine.

2. The pressure dérence across the pump must be equal in magnitude
the pressure drop in the pipe. We cawl fihe answer to the question by
superimposing the cueg of the fhw and the pumprhe \alues will be
those of the intersection of the curves (0.0fisrand 1.2-10Pa, respectively).

3. According to the l&r of Hagen and Poiseuille Bq.(1.27) doubling the cross sectiorould
lead to a reduction of the resistance bgcdr of fourOn the other hand, tnequal pipes in
parallel would only have half the resistance of a single one.

EXAMPLE 1.4. Pumping water through a smooth pipe.

Water is pumped 5 meters upward through the rough pipe with a length of 10 m and a radius of
2 cm described in Fig.1.29. We would like to have a flux of 8.0 liters/s. a) What is the pressure

difference the pump should build up for steady flow? b) Calculate the resistance and conduc-
tance. c) How large is the average speed of flow for a cross section of the pipe? d) If the flow
was still laminar, would the flux be higher or lower for the given pressure difference?

SOLUTION a) First we use the loop rule asHn.(1.23)for a closed loop fromA to B andC,

and back tA via the air. The pressure of the fluid increases ffoim B (this is a value we are
looking for), and it decreases backpfromB to C. The pressure drop is due to two processes:
first, we have fluid resistance, second, the fluid is lifted in the gravitational field:

AP, + AP, +AR, =0

whereAP, andAP,, are the pressure changes due to the pump and the vertical rise, respectively.
For AP we look in the diagram for the flow characteristic curve (middle cur#gii.29). A

flux of 8.0 liters/s corresponds to 0.008&snwhich yields a value of — 1.51Pa for the pres-

sure drop as a result of friction. R, we have

AR, = -pg|Ah| = -1000kg/m® [9.81Palin® /kg (5.0m = -4.910" Pa

Therefore, the pump must raise the pressure of the fluid by 1°9a191.99 bar.

b) Conductance and resistance are calculated according to the conductance or resistance laws in
Eqgs.(1.24) or (1.25):

ly S 7 Pals
=Y -~ /2-533M10°— O =1.88010
S Pals R m*

_ 1y _ I, _ 00080
== =-——m/s=6.4m/s
Y z = o207 " /

d) For laminar flow we calculate the conductance (or the resistance) according1®7).
From Eq.(1.24) we obtain

ot _ m.020*

=—— AP, =————1510°m3/s=0.94m%/s
8nl 8[0.001010

IV
The viscosity was taken frofirable 1.2 The value of the flux is about 100 times larger than the

actual one which is the consequence of underestimating the fluid resistance by a factor of 100.
|
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1.5 The Hydraulic Capacitance

EXAMPLE 1.5. Parallel and series connections of pipes for laminar flow.

Derive the relations for the hydraulic resistance of two parallel pipes, or two pipes in series, for
laminar flow. Neglect the influence upon flow of bends and connectors in the pipe systems. Paralel

pipes
SOLUTION For parallel piped)Pg is the same for both of them, while the current through both /v
is the sum of the single currents. Therefore: /
Ry

- APR — APR = DIVl + IV2 D71 u IVl IV2 Dﬁl '

lv
To obtain the equivalent resistance for parallel pipes we have to add the inverse of the sil |
resistances and then calculate the inverse.

For pipes connected in series, the calculation proceeds analogously. Note that here the current
is the same for both, while the total pressure drop is the sum of the single values:

APy _ AP +AR APy, | AR
R/le: Rll R2:|R1+IR2:RV:L+R/2
\ \ \ \Y
The total resistance is the sum of the resistances of the single pipes. Note that the results hold in
equivalent form for more than two pipes.
||

1.5 The Hydraulic Capacitance

When we lilt the model for the dynamics of thedwommunicating laés we sa that
we needed to relate pressurdatifénces to the amount obter stored in the las. This
is an &ample of the more general problem ofvha level quantity changes with the
amount stored in a system. Solving this problem will conclude mtrirfivestigation
of fluid flow. Further issues of hydraulics will be discussed in Chapters 3 and 4.

Volume and Pressure in Fluid Containers

Containers for flids are simple ydraulic derices which display the relationship just
mentioned. Pressuressels are another type of system where amountsds #itored
and the pressure of theiflis are related. Let ugdt consider the case of the opernd
containers in Fig.1.31.

Ah

of fluid stored.

We need to knw the fluid pressure at the bottom of a contaifée problem is simple
to solve for straight walled tanks (the leftmost container in Fig.1.31). There we have

p =PIy (1.28)
A
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FIGURE 1.31. For a given flid, the
pressure at the bottom of a contai
only depends upon the height of 1
fluid column. For a given containe
this quantity is related to the amot
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FIGURE 1.32. A graph ofP versus
Ky—which resembles the shape «
the container—is used to determi
volume as a function of pressure,
volume changes as a function of
changes of pressure. The upper ¢
gram is the source of this image:
the case of a tank with straighais,
the content of the symbolic contaii
represents theolume, while the bo
tom and the fluid level represent t
capacitance and the pressure of 1
fluid, respectively.
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if we neglect the pressure at the surface of the fluid. For more general shapes of tanks
the problem is cast in a tifent form. Vié consider he much the pressure of theiff

column changes if the volume is changed. The relation between the two quantities de-
pends upon the particular containéithe tank is wide at the currenté of fluid, it

takes more flid for a certain change of pressure. If it is nariibtakes less. There is

a quantity pertaining to the tank and th&dlwhich relates changes of pressure to
changes of volume:

B The quantity which tells us—for avgin container—how fast the volume
of fluid stored must change if weant to hae a certain rate of change of
the pressure at the bottom, is calledtifzdraulic capacitanc,:

dVv/ dt = K,dP/ dt (1.29)

Pc is the pressure related to the capacitance. In geKgrialyariable: it depends upon
the cross section of the tanlarFelatively small changes for whigk, can be consid-
ered constant we can write Eq.(1.29) in the form
AV = Ky AR, (1.30)
whereAP, is the change of pressure as the consequence of amounid efdted in
a container. Eq.(1.2%9lIs us that—for the straightalled tank—the hydraulic capac-
itance must be the factéfé(pg), and it is constant. For the general case, we obtain es-
sentially the same answer, only wittreplaced by the variable cross sectigh):

Alh) (1.31)

P9

V

The Graphical Meaning of Capacitance

There is a simple graphical procedure of relating terae stored to the pressure of
the fuid column which dexies directly from the image of theuftl container
(Fig.1.32).If we draw the pressure as a function of capacitance, we get a graph resem-
bling the shape of the contain®&emember that the pressure is proportional to the
height of the flid in the tank, while the capacitance is proportional to the cross section
at a gien height (i.e., pressur@)he volume of flid is read from the graph as the area
between the cueP(K,) and theP—axis up to pressufe Changes inmMume are equal

to the area of small rectangles of width and heighK,, which we can see by inter
preting Eq.(1.30) graphically.

General Hydraulic Capacitance

Finally, let us consider a dérent kind of flid storage which nertheless still displays

the same general relationship between storage and pressure, and which, therefore, is
described also in terms of a capacitafieée a pressureessel for liquids with a de-
formable membranéhe simplest grsion of this container is a small rubber balloon
filled with water. Adding more ater will increase the pressure of the liquid, and there
exists a general relation of the formkedi.(1.29) The characteristic cuevof the rubber
membrane will determine the capacitance as a function of pressure for this container
We can gen etend this gample to pressureegsels for gses. Usually, however, we
work with constant@lumes as we press morasgnto the tank. In this case we should
express the capacitance in terms of changes of the amouas,afagher than theols

ume, and changes of pressure.
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1.5 The Hydraulic Capacitance

1. What is the meaning of thgdiraulic capacitance? Explain thefdience
for containers storing liquidertically, and for pressureegsels for lig-
uids and gases.

2. What is the shape of the liquid containevihg a capacitance such as the
one in Fig.1.32What is the meaning of the horizontal distance betwe
the P—axis and th@®-K,, curve? What is this quantity proportional to?

3. Does the general deftion of capacitance relat®hme to pressure, or changes ofume
to changes of pressure? Does capacitance mean how much a system can store?

1. Hydraulic capacitance is the quantity which relates the rate of chang
pressure to he fast the elume changedhis form of the relation isal-
id also for pressuresgsels. In the case aiges stored at constaotwme A
we should replace the volume of the fluid by amount of gas.

2. The container gets namer at the topThe distance in the graph is the
capacitance at a\gin pressure (of the liquid at the bottom). It is prepor
tional to the cross section of the tank at the given height.

3. It relates changes, rather than the values themselves. No, it does not.

EXAMPLE 1.6. Fluid vessels and flow.

Consider a pressure vessel connected to an open, straight-walled container by a pipe. The con-

tainer is open to the air which has a pressure of 1.0 bar. The system contains oil with a de==*"

of 800 kg/n¥ and a viscosity of 0.20 Pa-s. The pressure-capacitance relation for the pressure

sel is given in the accompanying graph. The cross section of the tank is ¢.0B@enkength

and the radius of the pipe measure 2.0 m and 0.020 m, respeci)vitya certain pointin time  pressure vessel
the pressure vessel contains 0.15afmoil, whereas the tank has stored 0.20 @alculate the
flux of ail through the pipe. In which direction does the oil flow? b) What will the final level o
oil in the container be?

SOLUTION:a) We first calculate the pressure of the fluid in the vessel from the pressure-capac-
itance curve. Then we determine the level and the pressure of the oil in the tank. The difference
of pressures lets us calculate the flux if we know the hydraulic resistance for the flow through
the pipe. The latter will be given by the law of Hagen and Poiseuille.

Open container

The lowest possible pressure of the oil in the pressure vessélRsi10herefore, we calculate 2.0E+5
the volume of fluid in the container by the area between the pressure-capacitance curve an © 18645 ]
vertical axis starting &, = 1(P Pa. Se&ig.1.32 Since the capacitance curve is a linear function, 3 ' i

namely % 1.6E+5
Ky(P)=Ky(R)-a(P-R) , Ky(R)=4000°m*/Pa , a=4000"m?/pa’ S 148+

T 12E+5
the calculation is simple (you can read it from the graph): E

1.0E+5 ‘

T T
0 26 4E6 6E-6
Capacitance / m3/Pa

V(PV):%(KV(P3)+KV(PV))(PV—P3) O P,=15000°Pa

Here,P, denotes the pressure of the liquid in the pressure vessel. The pressure of the fluid at the
bottom of the tank, on the other hand, may be calculated with the help of the capacitance of this
container:

Ky = A/(pg) =0.080/(80010)m*/Pa=1.0010°m*/Pa O R =12000°Pa
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Chapter 1: The Storage and Flow of Fluids

Obviously, the oil must flow from the pressure vessel to the tank. To compute the flux of oil we
need the hydraulic resistance:

b) Oil will flow from the vessel to the tank until the fluid pressures in both of them have become
equal. The outcome of this process can be represented in the pressure-capacitance diagram.
Since the changes of volume associated with changes of pressure are shown as areas, we can set

| =
20E+S | that the final pressure attained will make the absolute values of the volume changes equal for the
§ 1.8E+5 containers (balance of volume):
% 1.6E+5 \\ BV, =-Ay,
_E- 1AE+5 The indext denotes the tank. These changes can now be expressed in terms of the changes of
5 ] W\ pressure:
T 1.2E+5 1
10E+5 4 | E(KVV(R/i)+KVv(P\/f))(Pvi _Pf)z_KVt(Ri _Pf)
0 46 8E6 12E-6 . ) . . . .
Final Capacitance  m/Pa whereP; is the final pressure attained. Solution of the equation led@®jstd26 kPa, leading to
pressure  -opactance/m a final value of 0.260 fof ail in the tank.

1.6 Diagrams for Modeling Hydraulic Processes

Diagrams are an important visual tool which helps in creating the abstractions neces-
sary for modeling of dynamical processes. Remember our basic image nahoe
works: flow, production, and storage of certain easily visualized quantities are the
cause of what we observMoreoverthe quantities éiw through differences of levels:
“downhill” for voluntary processes, “uphill” for involuntary ones.

Here we will study tw types of diagrams helpful in constructing modeéle first we
call asystem diagrapwhile the second—which we Ymalready encountered in the
Introduction and this chapter—is the well knogystem dynamics diagram

System Diagrams

The goal is to represent the image underlying natural processes with the help of dia-
grams. Since diw, storage, and \els are the main concepts we deal with, we need a
tool for visualizing these. Here, we construct simple system diagrams for some of the
important hydraulic phenomena.

First, consider a diid container with inlets and outled/e are concerned withoflv,
FIGURE 1.33. Symbolic represent  storage, and balandediagram for representingoflv and storage—tlt not balance it-
tion of flow and storage in a syste  gg|f starts with a box. Flows are visualized as arrows leading into or out of the box,

gﬁ?ggﬂgg%ﬂ'@%g‘qﬁgﬁgﬁgﬁsiﬂ while storage is symbolized by a little container inside the box (Fig.1.33).

ter represented by a system dynar In a second step, we add the information concernjdgdulic le\els, i.e., the pressure
diagram. of the flid as it fows into or out of the systerfihe \alues of the pressure are those of
the fluid at the system boundaitnside the system, the pressure magy\from point
to point. Flows and l&ls permit us to dma system diagrams of such fundamental h
draulic systems as turbines and pumps (Fig.1.35), and pipes (Fig.1.36).
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1.6 Diagrams for Modeling Hydraulic Processes

SYSTEM
e / FIGURE 1.34. Adding the informa-
' : tion concerning hydraulic levels tc
Py : the system diagram. The hydrauli
\‘: v — level is measured by the pressure
—> \ b L L the fluid.
n 2
Turbine Pump
' ' ' ; FIGURE 1.35. System diagrams of
: o s ; ot s turbine and a pump (from left to
p. ! L P P P right). The system diagrams shov
1 2 1 2

flows and levels, and they indicat
SYSTEM SYSTEM whether the flow goes up or dowr
with respect to the hydraulic level
Flows going dan are said to beol-

Iy SYSTEM SYSTEM L» gntary Tqydraulic phenomlena: the'
ly ly rive other processes. Flows goir
B | up are involuntary: they must be
P1 Ipz Pll P2 driven.

Note that system diagrams are snapshotg:dbaot sha time evolution; rather, they
represent conditions at a fixed moment at various points in a system or combined sve-

tem. In general, they are not directly useful for calculations. Their strength lies in p ,.-..-F.'Pfe.f.lfj\.'\f.....l
senting in a simple ay the most important process&sey are a tool for talking E ;
coherently about the problems posed—qguiding us in the use of the systentf vie * *
physical processes. Thean be used as stepsvtzd more formal representations of P . ' P2
what we see happeninthe systems diagrams will be particularly useful when we in- SYSTEM

clude the discussion of energy with the description of the processes (Chapter 4).

System Dynamics Diagrams

If we wish to model the dynamical aspects of processes with the goal of calculat Pll IP
system behavior, we havo turn to a tool which permits us to represent the relation 2
underlying nature. Hydraulics tells us what these relations are:

FIGURE 1.36. System diagram of
1. Laws of balancevhich relate the fixes to the rate of change of system con-luid flow with resistive characterit

tent. They sem as the backbone ofyaformulation of models of dynamical tic through a pipe. The fluid flows
processes. from a point of high to a point ofio

pressure.
2. Capacitance lawsvhich epress flid pressure in terms of thelume of

fluid stored.

3. Resistance lawsrhich relate fiws to pressure drops, and the concrete rela-
tions for a particular type of flow.

4. Theloop rule which states that pressurefdiences along a closed loop add
up to zero.

System dynamics tools pride a small collection oflilding blocks which is all we
need to formulate our wie of the dynamics of ptsical processedhis we hae al-
ready seen by way of example in the Introduction and in Section 1.1.
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FIGURE 1.37. Four basic substruc
tures of system dynamics models
hydraulic processes: the laws of |
ance, capacitance, resistance, an
loop rule.

FIGURE 1.38. System dynamics d
agram of a simple hydraulic prob-
lem. The diagram represents the
process of draining of a tank with
straight walls through a horizonta
pipe fitted at the bottom (Fig.1.24
The flux—pressure characteristic

cune is linear as in thewaof Hager
and Poiseuille.
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There are a fe fundamental substructures of a modehafriaulic systems from which
complete—and compke—models can beuilt (Fig.1.37).These elements represent
the four relations listed above, i.e., the law of balance, the laws of capacitance and re-

sistance, and the loop rule.

2. Capacitance

law

Capacitance

Volume

=.

=0

Pressure
Difference AP

3. Resistance
law

Pressure
Difference APy

Resistance

4. Loop rule

Difference AP,

O/\O

Pressure
Difference APy

Pressure

Pressure
Difference AP

System Dynamics Models of Hydraulic Processes

To demonstrate the use of these consider the example of a viscous oil flowing out of a
tank with a horizontal pipe fitted at the bottom, such as in Fig.1.24. All four substruc-
tures are needed, and the two parameters—capacitance and resistance—can be calcu-
lated from Egs.(1.31) and (1.27). The system dynamics diagram is shown in Fig.1.38.

. -
V=l /
V(t - 0) =V, /Capacitance
ly = AR:/R, I’
APy = -APR: \
AR: =V/Ky \
\
\ /
Capacitance \ |
law SN

_—

Pressure

Difference AP, /
< — — — Looprule =

ey

_—  — —

Law of balance
\' —

~

\ Resistance )

Pressure /
/ lDifferenceAPR /
N / ./ Resistance
~— / _

law

A system such as the one modeleHig1.38is called arRCsystenin analogy to sys-
tems made up of resistors and capacitors in electiitgtands for resistance, while
denotes the capacitance. In Chapter 2 we will demonstratevb@an ma& use of the
analogies which are suggested by our systems efaature. Chapter 3,rfally, will
introduce us to another interesting system property—namely inductance.
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1.6 Diagrams for Modeling Hydraulic Processes

EXAMPLE 1.7. Hydraulic circuit diagram.

Consider a hydraulic circuit consisting of a pump, turbine, pipes, and fluid storage as in the
companying figure. Consider the fluid to be taken from and discharged to a large shallow p
at ground level. Draw a flow diagram combining the system diagrams for each of the import
components.

SOLUTION:Let us begin with the pump. The pump, pipes leading to the storage tank, pif Pump c

leading to the turbine, the turbine, and the pipes leading back to the pump form a closed cir c
the elements are connected in series. The pond closes this loop. The pressure of the fluid is I& B /
in the pump. From there, the pressure decreases through the pipes and through the turbine A g Db_

E urpine

A

] e

TANK

PIPES
lvz
PIPES TURBINE —
1 Pc 1 Po 1 Pe iPA

Iva

The tank is connected in parallel to the circuit sectieB-C. In the fluid column, the pressure
decreases frofA; to P,. Note that the fluid current splits at pofit The sum of the three fluxes
atCis equal to zero.

EXAMPLE 1.8. System dynamic model for filling a tank.

The pump in the system shown in Fig.1li@ bperated at constant pressure as the tank is filled.
The flow obeys the law of Hagen and Poiseuille. Assume the pipe from the pump to the tank and
the pipe leading away from the tank to be identical. a) Represent the processes with the help of
a system dynamics model diagram. b) To what height can the tank be filled?

SOLUTION:a) The main features of the model are these. First, we represent the law of balance
of volume for the tank by a stock and a single flbyy from pointC in Fig.1.27to the tank).
This current comes from the node at p&@nwhich is also represented by a stock.

& m V2 (fluid in tank)

g H.—O—>
e

Resistance 2

Resistance 1

&,

i
BPpy P, Capacitance

Part I: An Introduction to Dynamical Processes 29



30

Chapter 1: The Storage and Flow of Fluids

Since the node cannot store fluid, the three fluxes associated wittCpsatisfy the condition

thatl,, equals the sum &, andls. I, andl; can be calculated from the resistance law if the
pressure differences across the pipes fBotmC, and fromC to D* are known. All we have to

do now is calculat®g from knowing the pressure difference set up by the pumpPafim

the capacitance law for the tank.

b) The maximum height to which the tank can be filled depends upon the maximum pressure
difference available for the fluid column froBito D. Since the tank and the second pipe are
connected in parallel, the pressure difference is the same as the or@tfrd. The latter,
however, depends upon the current of fluid flowing through this pipe.Now, the current through
the second pipe must be equal to that through the pump and the first pipe; the reason is simply
that the fluid is not flowing any longer into the tank when the maximum height of the fluid col-
umn has been reached. Therefore, the fluid directly flows from the pump thZcamgh out at

D*. Since the pipes are identical, each of them takes half the pressure difference set up by the
pump. Obviously, we now have

AP =APep. . AP-p = pghh,,,

1
AP =EAPpump ,

from which we conclude thath,,,, = AP,/ (2pQ)

Chapter Summary

We hae studied a small aspect of the geneedd fof fluid flow which is called fdrau-

lics. Hydraulics studies fluids in controlled environments—pipes and containers—of-
ten for the purpose of technical applications. Despite its limitations, it tells us much
about the behavior of nature. The most important points to remember about hydraulic
processes are these:

» Hydraulic processes ato do with the fiw and the storage of amounts offl
id. If we consider only incompressibleifis such as ater or oil, we can use
their volume as an easy measure of their amount.

» The fundamental behavior of fluids is expressed by the law of balance of vol-
ume. Wth incompressible flids—and disrgarding chemical reactions—the
volume of flid in a system can only change as the result afirdhd outfbw
(Section 1.2)Therefore, the sum of alblume flues tells us ho fast the @l-
ume of the fluid stored must change.

» If a fluid is at rest in communicating containers, thele will be the same,
not the wlumes. Level dferences—and with them pressurdetiénces—can
be the cause ofdilvs. In a closedydraulic circuit, the sum of all pressure dif-
ferences must be zero (loop rule; see Section 1.3).

» Normally, there is friction in flid flow (as a consequence of viscosifyf)ere-
fore, the pressure of thaiftl must decrease in the direction afdl We need
a pressure dérence to force auld through a pipe, and this pressurdedif
ence is related to thefll by a resistancewa(Section 1.% the fow equals the
pressure difference divided by the hydraulic resistance.

» In fluid containers, the pressure of thadlis related to the amount ofiii
stored by a capacitance law (Section 1.5): the rate of change of pressure mul-
tiplied by the capacitance tells us how fast the volume stored must change.

» Combining lavs of balance with las for flows and containers, and with the
loop rule, leads to complete models of dynamic hydraulic processes.

Fluids, Electricity, Heat, and Motion



Questions

Questions

1. Which phenomena are related by w laf balance®hat is
the law of balance of amounts of water?

2. Areyou sure thatdws of vater are the only processes which
can change the amount ohter in a system? If tyeare not,
what law would have to be changed, and how?

3. Consider Fig.1.8. Whis there a minimum of theolume of
water stored in the system at about 1.3sWhat can you
say about the dixes of water before this point in timefter
this point in time?

4. Why does the strength of the gravitational field play a role in1
the pressure of auild column?Why does the pressure in-
crease linearly with depth if theuitl is a liquid such asater?

5. Consider tvv communicating la&s with a single channel
connecting them, and without further ovis or outfows. Is
the system at rest when there are equal amountsitef \m
the lakes?

6. What is the relation between viscosifiction, and produc-
tion of heat in flid flow? What are the conditions of ideal
flow? 1.

7. In Example 1.4ve calculated the pressurefditnce to be set
up by a pump for pumping auftl at steady state. Does your
answer depend on whether theidl entering the pump al- 2.
ready flows or is pumped from rest?

8. InFig.1.26 a straight line connecting thaiepoint of the 3.
pipe and the top level of the glass tubes showing the pressure
of the flid goes to the top of theuftl layer in the tank (upper 4
figure in Fig.1.39)Which model assumptions makhis to be
the case? Actuallyt is found that the line goes to a point well
below the fluid surface (lower figur&)/hat is the reason for
this behavior? What did we neglect?

NEl
L -

9. We hae associated the notion of resistance and capacitance
with flow through pipes, and with containers storingds,
respectively. Couldn’a capacitor also be a resistand vice-
versa?

FIGURE 1.39.
Question 8. 6

10. What does the characteristic cerf a pump look lig which
sets up a constant pressure difference independent of the flux

of fluid?

Use the abstract $ldraulic” image of a straight alled tank
containing a flid to explain the relation between content-le

11.

Part I: An Introduction to Dynamical Processes

12.

13.

14.

el, and capacitance. Which geometrical quantity corresponds
to which physical one?

Explain the meaning of the termsdluntary” and “irvolun-

tary” hydraulic processes. In what sense is the phenomenon
of resistive flow of a viscous fluid through a pipe a voluntary
hydraulic process? Huwis this epressed in a system dia-
gram?

What is the system diagram of aifl dischaging from a tank
such as in Fig.1.24?

In Fig.1.38 the equation of balance (thestiin the list of
equations) does notvato be written xplicitly in software
tools. Why is this the case?

5. What is the behaor over time of the currents through theotw

pipes in the system dxample 1.8 Use qualitatie reason-
ing.

Exercises

A pump forces ater through a long pipe, and then through a
turbine. Drav the combination of system diagrams represent-
ing this system.

Calculate the pressure of thater at the bottom of a lakL00
m deep.

A persors blood pressure is said to correspond to 130 mm of
a column of mercury. Determine the pressure.

Castor oil is pumped through a pipe 10 m longirga di-
ameter of 5.0 cm. Determine the hydraulic resistance.

Water is pumped through a smooth pipeihg, respectively,

a length of 10 m and a diameter of 4.0 dine flux is 10 li-
ters/s. The water then fws through a turbine, and back to the
pump through another pipe\iag the same dimensions as
the first. The pump sets up a pressurdatiénce of 5.0 bar
What is the pressure difference across the turbine?

Determine the ydraulic capacitance of a swimming pool 25
m long and 15 m wide.

Two communicating straight-walled containers having diam-
eters of 0.40 m and 0.60 m, aréefi with olive oil to levels

of 1.0 m and 0.30 m, respealy. What is the commonrfal
height of the oil in the tanks?

In the process modeled in Fig.1.38, the volume of fluid in the
tank as a function of time tak a form similar to the one
shown in the graph of Fig.1.40. Why is this so? How large is
the (negative) slope of the curve right at the beginning?

FIGURE 1.40.
v Exercise 8.
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Problems

FIGURE 1.41.
Problem 2.

Two currents of \ater are fhwing into a fountainThe first
changes linearly from 2.0 liters/s to 1.0 liters/s within the fi

10 s. The second has a constant magnitude of 0.50 liters/s. fn
the time span from the gimning of the 4th second to the end

of the 6th second, the volume of the water in the fountain de-
creases by 0.0309ma) Calculate the volume flux of the cur-
rent leaing the fountain. bHow much vater will be in the
fountain after 10 s, if the initialolume is equal to 200 liters?

Oil having a density of 800 kg/frand a viscosity of 0.60aPs

is flowing through a system of pipes as Tine pressure at
pointA is 1.40 barwhile at point C it is 1.20 bafhe thin
pipes hae a diameter of 1.0 cm while the diameter of the
piece leading from\ to B has a diameter of 2.0 cm. dlect
the infuence of corners in the pipes, and assume thefa
Hagen and Poiseuille to appg)What is the alue of the ol-
ume flix through the laver pipes? b) Hw large is the total

volume flux through the pipes? ¢) What is the pressure at B 3

10.0m

A

e
=

50m 7.

Two tanks (se€&ig.1.42 contain oil haing a density of 800
kg/m? and a viscosity of 0.20aPs. Initially in the container 8-
at the left, which has a cross section of 0.020thre fuid
stands at a level of 10 cm; in the second container (cross sec-
tion 0.0025 rA) the level is 60 cmThe hose connecting the g
tanks has a length of 1 and a diameter of 1.0 cm.

a) Calculate the pressure At B, C, and D at this point in
time.The pressure of the air is equal to 1.0 bad C is in the
middle of the hose. [8ketch a pressure prii(pressure as a
function of position) for a path leading frofnto D; include

a point C* at the other end of the pipe from point BAtjat

is the volume current right after the hose has been opened?

FIGURE 1.42.
Problem 3.

4,
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A large and shallow lakis going to be lfed through a hori-
zontal pipe with a length of 10 km. Initially the &ls empty;
in the end it is supposed to contair? hef of water. Assume
the tydraulic resistance to be modeled by the &f Hagen
and Poiseuille; i.e., take the volumexflto be proportional to
the pressure dirence across the pipehe pressure drops by
1% Pa per meter of length at alume flix of 1.0 n¥/s. While

10.

the lake is being filled, water evaporates from its surface at a
rate of 0.10 ifs. a) If the wlume fux is constant and equal

to 0.50 n¥/s, what is the rate of change of twume of vater

in the lale? b) Hav long will it take to fil the lake? c) Hav
large is the pressure difference set up by the pump?

A large oil tank is fied through a pipe at its bottom (as in
Fig.1.43). The flv of oil through the pipe is supposed to be
laminar. Derive the instantaneous volume flux in terms of the
length and the radius of the pipe, the viscosity and density of
the oil, and the height of the oil in the tank.

FIGURE 1.43.
Problem 5.

Two tanks (seéig.1.42 contain oil with a density of 800
kg/m?® and a viscosity of 0.20aPs. Initially in the container
which has a cross section of 0.019) the fuid stands at ale

el of 10 cm; in the second container (cross section 0.08p5 m
the lewel is 60 cmThe hose connecting the tanks has a length
of 1.0 m and a diameter of 1.0 cm.e&h the lgels in the
containers as a function of time.

Calculate the hydraulic capacitance of a U-shaped glass tube
used in a mercury pressurauge.The inner diameter of the
tube is 8.0 mm.

Calculate theydraulic capacitance of a conically shaped fl
id container as a function of fluid pressure at the bottom (see
Fig.1.31).

Two containers are joined by a pipe adime second contain-

er has both an inlet and an outfetsume the éiw through the
pipes to obeg the lav of Hagen and Poiseuille. &yrite the
equations of balance oblume for the flid in the containers.

b) Derive the relation betweemlume of flid and pressure of
fluid at the bottom of each of the container§Vdye the lavs

for the wlume fluxes through both pipes. d) Degithe difer-
ential equations for the height of the fluid in each of the con-
tainers in terms of theydraulic capacitance and resistance of
the elements of the system.

FIGURE 1.44.
Problem 9.

For the system of containepipes, and pump shm in
Fig.1.27derive a)the instantaneous pressurefdience
across the pump, and ti)e instantaneousolume flux
through the pumglhe flid is oil as inProblem 61t stands at

a lewel of 1.0 m in the tank kang a diameter of 1.0 nThe
pipes hae a diameter of 5.0 cm, and lengths 2.0 m (B to C)
and 3.0 m (C to D*), respectively.
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