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Fluids, Electricity, Heat, and Motion

 

The flow of water at the surface of the Earth serves as the prime source of our under-
standing of physical processes. We can see nature at work in waterfalls, rivers, and
lakes. Technical examples—the water supply of homes, heating oil storage, hydraulic
power plants, or hydraulic control systems—teach us about the physical quantities and
relationships necessary for a description of hydraulic phenomena.

In the first section of this chapter we will construct the model of the dynamical pro-
cesses occurring in a system of two communicating lakes. Without going into the un-
derlying theory, we will simply create a model and simulate it. We will see in this
section how we can transform our fundamental ideas about how nature works into
quantitative models which allow us to actually calculate the outcome of processes. 

 

1.1 A Simple Model of Fluid Storage and Flow

 

Imagine two small lakes fed by a single stream. The lakes communicate through an un-
derground channel. The second lake drains through another underground passage into
the open (Fig.1.1). It is known that, during a long period when the stream feeding the

first lake carries a steady current of water of 10 liters per second, the levels of water
measured from the bottom are 10 m and 8 m, respectively. The surface areas of the
lakes are 200 m

 

2

 

 and 400 m

 

2

 

.

Rain lets the stream feeding the lakes swell. After each rain fall, the current of water is
found to decrease to 5 liters/s for s short period. It increases again to a steady value of
10 liters/s after the first rain, and to 9 liters/s after the second rain (Fig.1.2). We wish
to construct a model of the flow and the storage of water which allows us to calculate,
and therefore predict, the water levels in the lakes as a result of the changes of the cur-
rent feeding the lakes.

 

A Partial Model: A Single Lake With a Single Flow of Water

 

We will approach this first example of a model of a dynamical system by constructing
it in small steps. First, assume that we only have one lake which is fed by a stream with-
out being drained. In other words, we have a single container for water with a single
flow. Obviously, when constructing a model of this situation, we must create a descrip-

 

FIGURE 1.1.

 

Two lakes are commu-
nicating through an underground 
channel. The first lake is fed by a 
stream, the second drains through 
another underground channel.
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FIGURE 1.2.

 

The current of water 
feeding the first lake as a function of 
time. We wish to construct a model 
of the lakes which allows us to calcu-
late how the system reacts to the 
changes of the current of water feed-
ing them.
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Cover picture: Lake Cleuson near Nendaz in the Swiss Alps; Grand Coulee Dam.
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tion which uses containers and flows to mimic what we see in reality. Our first step con-
sists of drawing a flow connected to a container (Fig.1.3).

 

1

 

 This diagram represents our
belief that the flow determines how the content of the container will change. In other
words, it represents the 

 

law of balance of amounts of water

 

 necessary to compute what
is happening in the system.

We have to introduce abstract quantities which let us specify numerical values associ-
ated with how much water is in the lake, and how large the current of water is in the
course of time. For the former we simply use the 

 

volume of water

 

 (measured in cubic
meters), and for the latter we take what is called a current or a 

 

flux of water

 

 (measured
in cubic meters per second). In Fig.1.3, the flow is drawn as a fat arrow with a circle
containing the symbol 

 

I

 

X

 

 which we will use to denote currents or fluxes, while the vol-
ume of water contained in the lake at any moment is represented by a box which is
called a stock. Stocks and flows make up the backbones of the models we are going to
construct in this book.

Now, we have to think carefully about the form of laws of balance such as the one we
just formulated graphically. So far we said that—if there is only one flow—the flux de-
termines how the amount of water in the container is going to change. In fact, the vol-
ume flux of water determines 

 

how fast

 

 the volume must change. The formal quantity
measuring how fast a system content changes is called the 

 

rate of change

 

 of this quan-
tity, and it is denoted by the symbol for the content with a dot written above it. Thus,
the rate of change of the volume 

 

V

 

 of water in the system is written as If we write

 

I

 

V

 

 for the flux of volume associated with the single flow of water, the law of balance of
the volume of water of the lake is written in the following form:

 

(1.1)

 

In other words, whenever we express our ideas of the storage and the flow of a substan-
celike quantity in the form of a diagram containing stocks and flows as in Fig.1.3, we
can immediately write down the law of balance in mathematical form.

Calculating the volume of water in the lake as a function of time calls for solving the
law of balance expressed in Eq.(1.1). By the way, this step is called simulating the
model. However, before we can do this for our miniature model of a lake with one
stream feeding it, we need to know two things: first, the flux 

 

I

 

V

 

 must be know for the
period of time for which we wish to compute the content of the lake, and we have to
specify the amount of water in the lake at the beginning of this period. The latter quan-
tity is called the 

 

initial value

 

 of the volume 

 

V

 

. For our example we will choose a con-
stant flow of water of 10 liters/s. Therefore, the complete set of relations specifying our
model (Fig.1.4) in mathematical terms is

 

(1.2)

 

A Simple Numerical Method for Solving the Equations

 

We have to think of a method of solving the set of equations. First, we have to note that
the solution does not consist of just three numbers, but of an infinite number of values

1.  Here, we adapt the diagramming technique known from system dynamics tools such as
Stella to our needs in physics, which are almost identical to the standard system dynamics
terminology.

I
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FIGURE 1.3.

 

System dynamics dia-
grams of dynamical processes start 
with stocks and flows, representing 
system contents and currents of sub-
stancelike quantities (such as the vol-
ume of water).
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FIGURE 1.4.

 

A combination of a 
stock and flow(s) represents a law of 
balance. Here, this law relates the 
flux of water to the rate of change of 
the water content. The flow of water 
and the initial value of the content 
must be specified for a solution of the 
law if balance to be possible.
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of the volume at all points in time in the interval of interest. In other words, the solution
of Eqs.(1.2) is the function 

 

V

 

(

 

t

 

). Now, solving Eqs.(1.2) is not all that difficult; we
know that the volume of water in the lake changes as the result of the influx of water.
Knowing the flux lets us find out how much water has been flowing into the lake during
a small period of time which we call a 

 

time step

 

 

 

∆

 

t

 

, namely 

 

I

 

V

 

∆

 

t

 

. The amount of water
added to the lake (or withdrawn from it) during a specified period of time is called the
amount 

 

exchanged

 

, and it is abbreviated by 

 

V

 

e

 

:

 

(1.3)

 

Note that this expression is correct only if the flux of water is constant during the time
step considered. If this method of determining the volume exchanged is not accurate
enough, we can change either the time step 

 

∆

 

t

 

 or the method embodied by Eq.(1.3).

If we now add this amount of water communicated to the lake to the amount of water
in the lake at the beginning of the time step, we obtain the volume of water at the end
of the step:

 

(1.4)

 

This is a simple procedure for solving sets of equations of the type found in Eqs.(1.2).
It can be implemented in the form of a spread sheet which, in our simple case, can be
set up and computed manually (Table 1.1).

Typically, we present the solution of the set of equations in the form of a diagram, i.e.,
we display 

 

V

 

 graphically as a function of time (Fig.1.5). In our example, the water con-
tent of the lake increases linearly with time, which is the result of the single constant
flow of water into the system.

Before we continue extending the model of the system we will change the expression
for the flow of water feeding the lake. Let the flux of water increase linearly from 10
liters/s at 

 

t

 

 = 0 s to 18 liters/s at 

 

t

 

 = 160,000 s. The equations to be solved are

 

(1.5)

 

If we use the same time step of 40,000 seconds as in the previous example, we will get
the results presented as the lower curve in Fig.1.6. If, on the other hand, the number of
steps is doubled, we obtain a different solution (center curve in Fig.1.6).

 

TABLE 1.1.

 

Spread sheet for calculating the solution of Eqs.(1.2).
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FIGURE 1.5.

 

The solution of a set of 
equations such as Eqs.(1.2) is given 
in terms of the volume as a function 
of time. The result can be presented 
in form of a graph of 

 

V versus t.
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Our algorithm for solving the equations (Eq.(1.4)) only yields an approximation to the
true solution which improves with decreasing size of the time step. (In our first exam-
ple, Table 1.1, the result is accurate only because the flow is constant.) If we decrease
the time step used for the second calculation even further, the result will be still more
accurate. Fig.1.6 compares the numerical solutions with the analytical result calculated
with the help of formal rules.

 

A Lake and Two Flows

 

Let us extend the model by assuming that the first lake also drains through a second
flow. This assumption is easily taken into account by adding a second flow to the stock
in the system dynamics diagram of Fig.1.3. In addition, we want to calculate the water
level in the lake.

The second flow is again drawn as an arrow pointing toward the stock, even though it
is supposed to represent a stream of water flowing out of the system. However, we can
deal with this situation by giving the flux a negative value. Assume that the inflow is
constant an equal to 0.010 m

 

3

 

/s, while the outflow increases linearly from – 0.015 m

 

3

 

/s
to – 0.007 m

 

3

 

/s in the first 160,000 s (Fig.1.7 and Eqs.(1.6)).

There is a new relation showing up in the model diagrammed in Fig.1.7, namely the
law relating the level of water to the volume and the surface area of the lake. The par-
ticular relation shown assumes straight vertical walls for the lake. After assembling all
the relations and specifications of parameters, the complete set of equations making up
our model of the lake looks as follows:

 

(1.6)

 

The solution of the set can be obtained with the same basic procedure as the one used
so far. Instead of Eq.(1.4), we now have

 

(1.7)
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FIGURE 1.6.

 

Comparison of two 
numerical solutions of Eqs.(1.5) 
with the theoretical result. The low-
er curve is the result found in with a 
time step of 40000 s, whereas the 
one in the middle is obtained with 

 

∆t

 

 
= 20000 s.
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FIGURE 1.7.

 

System dynamics dia-
gram of the model of a lake fed by a 
stream and draining at the same 
time. Here, the law of balance of 
amount of water contains two flows 
instead of one. Moreover, the model 
contains a second relation which al-
lows us to calculate the level of the 
water from the volume of water and 
the surface area of the lake.
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Again we can use a spread sheet to do the actual computation; only, this time, the
spread sheet is larger. The time step chosen is 20,000 s as in the second solution of
Eqs.(1.5). The solution is represented graphically in Fig.1.8.

 

A More Realistic Representation of the Draining of the Lake

 

The special model produced so far certainly does not represent reality very well: the
flows—especially the one draining the lake—can be specified at random to fit any de-
sired behavior, which is hardly what we expect of a model. In nature, processes are de-
termined by other quantities of the system under consideration or by other systems
influencing it. In other words, flows are determined by the model itself.

In our case we expect the flow through the underground channel draining the first lake
into the second one to depend on the circumstances of the system. The flow must in
some way depend on the difference of the levels of water in the two lakes, and on the
nature of the passage between the two and on the properties of water (Fig.1.9). In par-

ticular, if the water is at the same level in both lakes we should not see any flow at all.
Since of the factors listed only the levels of the water can change, we will introduce
them in a further refinement of the model. The properties of the channel and of the wa-
ter will be expressed in terms of a constant factor (Flow constant). The simplest possi-
ble relation for Flow 2 is one for which 

 

I

 

V

 

2

 

 is proportional to the difference of levels 

 

h

 

1

 

– 

 

h

 

2

 

, with the flow constant 

 

k

 

 as the multiplying factor:

 

(1.8)

 

Before we go on to determine the behavior of the new model, we can use a general ar-
gument to determine the magnitude of the Flow constant 

 

k

 

: as mentioned in the intro-
duction to this example, it has been observed that the levels of the lakes stay constant
if they measure 10 m and 8 m respectively, and if the stream feeding the first lake de-
livers 10 liters of water per second. Now, the level of the first lake can only stay con-
stant if the inflow and the outflow of water exactly cancel. This requirement puts the
value of 

 

I

 

V

 

2

 

 at – 10 liters/s. For a difference of water levels of 2.0 m, 
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 must therefore
be 0.0050 m
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FIGURE 1.8.

 

Numerical solution of 
Eqs.(1.6). Note that the volume of 
water in the lake decreases as long 
as the sum of the flows of water is 
negative.
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FIGURE 1.9.

 

The extension of the 
previous model includes an expres-
sion for Flow 2 which depends upon 
the difference of water levels in the 
two lakes.
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If we replace Eq.(1.6)

 

d

 

 by Eq.(1.8) and add values for 

 

h

 

2

 

 and 

 

k

 

, we arrive at the com-
plete list of equations for the extended model (Eqs.(1.9). Naturally, giving 

 

h

 

2

 

 a constant
value reflects a fundamental flaw in the current model which will only be removed by
considering the dynamics of the second lake as well. This will be done in the next sub-
section. Again, the equations can be solved by the spread sheet technique developed
before. This time, however, the calculations are slightly more involved. The reason is
to be found in the fact that the flows are not directly specified functions of time but rath-
er depend upon quantities of the system which themselves are the result of the solution
of the model equations. However, by progressing step by step in a spread sheet as in
Table 1.1, the missing values are computed as they are needed.

If we use the values for the levels and the feeding stream as detailed above, we should
get a steady state, i.e., the levels of the lakes should not change. This can be verified by
doing the appropriate calculations. However, it is certainly more interesting to do a cal-
culation for which values are changing. Assume, therefore, that after a period of steady
conditions, the level of the water in lake two suddenly drops to 5.0 m. As a conse-
quence, the flow from the first to the second lake will increase, leading to a decrease of

 

h

 

1

 

. This in turn must decrease the magnitude of 

 

I

 

V

 

2

 

, which will make 

 

h

 

1

 

 decrease more
slowly, and so on. All in all we should expect 

 

h

 

1

 

 to decrease to a level for which steady
conditions are attained once more.

 

A Complete Model of Two Communicating Lakes

 

The model of the system of two lakes certainly cannot be complete without consider-
ation of the dynamics of Lake 2 (Fig.1.1). This is accomplished simply by adding the
law of balance of water for this partial system. Lake 2 is fed by the current of water
flowing from the first lake, and it drains through the second underground channel into
the open. Therefore, in a graphical representation of the model, we have to add another
stock with two flows to the diagram of Fig.1.9. To complete the model we have to de-
termine the new flows (Fig.1.11).

Since Flow 3 represents the water flowing from the first to the second lake, 

 

I

 

V

 

3

 

 must
simply be the negative of 

 

I

 

V

 

2

 

. For the flow draining Lake 2 (i.e., 

 

I

 

V

 

4

 

) we will use a re-
lation very similar to the one written for 

 

I

 

V

 

2

 

; Eq.(1.8). Here, the difference of water lev-
els is equal to the level of water in Lake 2:

 

(1.10)

 

(1.9)
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FIGURE 1.10.

 

Numerical solution 
of Eqs.(1.9) compared to analytical 
solution. The level of water in the 
first lake reaches a new steady value 
of 7.0 m, again 2.0 m above the one 
of the second lake.
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System dynamics 
model of two communicating lakes. 
Note the two stocks and associated 
flows which represent two laws of 
balance. Model equations:
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The second Flow constant 

 

k

 

2

 

 may be determined in the same way as 

 

k

 

1

 

. It is known that
steady conditions prevail if the flow feeding the lakes is 10 liters/s, and the levels are
10 m and 8 m, respectively. For the steady state, the flows with respect to a reservoir
have to balance. Therefore, we have 

 

I

 

V

 

1

 

 = 

 

I

 

V

 

2

 

 = 

 

I

 

V

 

3

 

 = 

 

I

 

V

 

4

 

 (for the magnitudes of the
fluxes). From this we conclude that

The model is completed, and we can solve the equations. Basically, this works as be-
fore, i.e., we can use the spread sheet technique. Except for the number of operations
to be performed, the computational technique is the same. It simply has to be applied
to two laws of balance:

 

(1.12)

 

Computations can be performed with all sorts of initial conditions or inflows. In
Fig.1.12, the solution of the problem stated at the beginning of the section is shown in
form of curves. The flow of water feeding the lakes is as specified in Fig.1.2, and the
response of the lakes can be read from the curves representing the water levels.

 

What Does the Model Teach Us About Hydraulic Processes?

 

Take a closer look at what we have assembled on the previous pages. The exercise
should tell us much about the problem of hydraulic processes. Essentially, there are
four types of relations to be found in the model that was constructed.

We started the modeling process by expressing our assumption that flows of water are
responsible for changing the amount of water in each of the lakes. The formal rules be-
hind these relations are called laws of balance. They are the general laws which relate
processes (flows) to what happens to a system (changes of content). We will study laws
of balance a little more closely in Section 1.2.
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FIGURE 1.12.

 

Behavior of the lakes 
according to the model represented 
by Fig.1.11 and Eqs.(1.11). The cur-
rent of water feeding the lakes is as 
specified in Fig.1.2. Note that the 
lakes respond to an increase of the 
flow by increasing the level, but the 
response is delayed; the delay is larg-
er for Lake 2. For a steady inflow 
which is smaller than the original 
one, the lakes find new steady values 
for the levels. The modeling and the 
simulation were done with the help 
of Stella II.
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To flow through the underground channels, water needs a driving force. We know that
pressure differences are the cause of the flow. Therefore we have to investigate pressure
and pressure differences, and their role in hydraulic systems (Section 1.3).

Pressure differences and flows are related. In the case of fluids, the relationship may
depend upon the channel and the properties of the fluids. We therefore have to learn
more about how flows depend upon driving forces (Section 1.4).

Since we believe that the pressure differences are responsible for forcing the water
through the underground channel between them, and since some of the pressure differ-
ences in the system depend upon water levels in the lakes, we should be able to calcu-
late these levels. Naturally, they are related to the amount of water in a lake and the
shape of the body of the lake (Section 1.5).

1. If you had to take into account evaporation of water from the surface of
Lake 1—at a constant rate proportional to the surface area—how would
you have to change the model diagrams in Figs.1.7 and 1.9?

2. Does the addition of evaporation change the nature of the relationships
between volume, surface, and level (Fig.1.7) or between flow and differ-
ences of levels (Fig.1.9) in any way? Does it change the behavior of the
system?

3. Consider two communicating lakes without inflow and outflow. When does the current of wa-
ter between them stop? What condition is attained when nothing changes anymore?

4. Can you think of a numerical scheme which yields accurate results for the problem of
Eqs.(1.5)? Would this scheme yield accurate results for more general flows?

5. What is the graphical representation of the relation between flow and difference of levels
used for the models shown in Figs.1.9 and 1.11? Do you expect the relation between flow
through a channel or pipe always to be of this form? Do you know the equivalent diagram
used in electricity?

1. You first have to add another flow representing evaporation to the struc-
ture of stock and flows in the diagram(s). The you have to express the
flow as the product of some constant and the quantity Surface 1.

2. The particular laws from which we calculate the levels and the flows
have nothing to do with how many flows there are in the structure of
stocks and flows. However, changing the flows naturally changes the be-
havior of the system.

3. Connecting different types of containers always leads to the same result: in the end, the levels
of fluid must have become equal. This is reflected in our model: we can see in Eqs.(1.11) that
the flow IV2 (which is the same as IV3) stops when this condition is met. 

4. For Eqs.(1.5) we could choose a method which uses the values of the flows at the beginning
and the end of the time step ∆t and calculates the average value. Multiplying this average flow
for ∆t by the time step yields a correct value for the volume of water exchanged as long as
the flows are linear functions of time. For flows which are more general functions of time this
scheme is again inaccurate.

5. A graph of IV versus the difference of levels yields a straight line going through the origin of
the graph; you can see this by inspecting the equation for IV2 (Eq.(1.11)d). We only get this
linear form if the flow is independent of the channel or pipe, and the fluid properties. In elec-
tricity, the equivalent graphs are called I-U (current-voltage) curves or lines. (See Chapter 2).

 

Q

 

A
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1.2 Balancing Amounts of Fluids

 

Storage and flow of fluids are at the heart of hydraulic phenomena. Since the flow of a
fluid is responsible for the change of the amount of fluid contained in a system, there
must be a relation between flows and these changes; the relation is called a 

 

law of bal-
ance

 

. The art of balancing amounts of water requires us to introduce abstract quantities
with which we measure flows and amounts. Then, related quantities are defined and
with their help the law of balance is expressed. Here we will get to know a graphical
method for dealing with the relations between flows and change.

 

System Content: Volume and Rate of Change of Volume

 

We need an abstract quantity to measure the amount of a fluid contained in a system.
Nature offers three measures: 

 

amount of substance

 

 which used by chemists, 

 

mass

 

which is mostly used by mechanical engineers, and 

 

volume

 

. Under the simplest of cir-
cumstances these measures are related by constant factors making them practically
equivalent. If there are no chemical reactions, and if the fluid is incompressible, i.e., if
the volume of a given amount of fluid cannot be changed, the factors relating amount
of substance and mass, and mass and volume, are constant. For reasons of simplicity
we shall mostly choose the volume of the fluid as the measure of its amount. Since it
is of interest as well, we shall sometimes use the mass of a fluid when convenient. The
relation between mass and volume is

 

(1.13)

 

where 

 

ρ

 

 is the 

 

density

 

 of the fluid. We measure volume in m

 

3

 

, mass in kg, and density
in kg/m

 

3

 

.

Since we are dealing with dynamical processes, the volume of fluid in a system must
change with time. Therefore, we do not need only single values of this quantity. Rather,
we are interested in the 

 

volume as a function of time

 

. Such functions can be represented
in various ways such as equations, tables, and graphs, where graphs convey the clearest
image of the quantity as it changes in the course of time (Fig.1.13).

 

Chang e and rate of c hange

 

. The graph of 

 

V

 

(

 

t

 

) also contains all the other information
important to a description of what is going on with the amount of fluid stored in the
system. First, we can read from it values of 

 

V

 

 for specific moments in time. Second, we
can determine the change of volume for a given period of time lasting from 

 

t

 

1

 

 to 

 

t

 

2

 

(Fig.1.14). The 

 

difference of volume

 

 for two points in time is defined as

 

(1.14)

 

It is always the later value minus the earlier one; also, it is independent of what happens
to the volume in the time span between the two instants 

 

t

 

1

 

 and 

 

t

 

2

 

. Third, and most im-
portant, the graph also tells us 

 

how fast the volume is changing

 

 at any given moment.
Obviously, the graph of 

 

V

 

(

 

t

 

) also contains this information. If we look at the curve rep-
resenting the volume as a function of time we can see how fast 

 

V

 

 is changing from how
steep the curve is at that point in time. The steeper it is, the faster the change. Now we
use the graphical representation of 

 

V

 

 to define what we mean by 

 

how fast

 

 the quantity
changes. We can measure how steep the curve is at a point by drawing the tangent to
the curve (Fig.1.15) and determining the slope of this straight line. The 

 

slope of the tan-
gent

 

 is said to measure 

 

the time rate of change

 

 of the quantity 

 

V

 

 at the given point. The
slope of the tangent can be determined from any rectangular triangle with horizontal
and vertical legs having the tangent as the hypotenuse. It is simply 

 

∆

 

V*

 

/

 

∆

 

t*

 

 as seen in
Fig.1.15, and has units m

 

3

 

/s. As mentioned before, the rate of change of 

 

V

 

 is denoted

m V= ρ

 

FIGURE 1.13.

 

The volume of a fluid 
stored in a system changes in time as 
the result of a dynamical process. 
The graph of 

 

V(t) lets us visualize 
most easily what is happening to the 
quantity 

 

V.

V

t

 

FIGURE 1.14.

 

We can read values of 

 

V

 

 for specific moments directly from 
the graph. Also, the change of 

 

V, ab-
breviated by 

 

∆V, can be read off the 
vertical axis.

V

t

V2

V1

t1 t2

∆V V V= −2 1

 

FIGURE 1.15.

 

The quantity measur-
ing how fast the volume changes at 
an instant—called the 

 

rate of change 
of volume

 

—is visualized by how 
steep the curve is. This in turn is de-
termined by the slope of the tangent 
to the curve for a given instant.

V

t

∆V*
∆t*
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by the symbol  There are other methods of determining the rate of change of 

 

V

 

 from
the knowledge of 

 

V

 

(

 

t

 

)—such as numerical and formal ones—but this one is the most
easily visualized.

A simple numerical method to determine the rate of change of volume is the following.
Assume that we know the values of 

 

V

 

 at as many points 

 

t

 

 as we wish. We may know a
formal representation of the function—an equation for 

 

V

 

(

 

t

 

)—or we may have a table
of values with many entries for finely spaced points in time. The method also can be
explained in graphical terms (Fig.1.16). Imagine two points separated by a small inter-
val 

 

∆

 

t

 

. The associated values of 

 

V

 

 are supposed to be known. We can approximate the
slope of the curve in the narrow interval by the line connecting the two points on the
curve (the secant). The slope of the secant is determined easily:

 

(1.15)

 

The quantity 

 

∆

 

V

 

/

 

∆

 

t

 

 is called the 

 

average rate of change

 

 for the interval 

 

∆

 

t

 

. In a table
of values the average rate of change is determined easily for each interval according to
the rule of Eq.(1.15). Because of the similarity with calculating the ratio of the differ-
ence of volume and a time span 

 

∆

 

t

 

, we also use the symbol 

 

dV

 

/

 

dt

 

 for the rate of change
of volume:

 

(1.16)

 

Naturally, the rate of change of 

 

V

 

 can be determined for any point in time for a smooth
curve. If we do this graphically as described before for a number of points, we can
transfer the values of 

 

dV

 

/

 

dt 

 

to a table from which we can create a graph of the rate of
change (Fig.1.17).

 

Calculating the volume from its rate of change

 

. We have just learned how to calcu-
late changes of volume and the rate of change 

 

dV/dt

 

 from the information contained in

 

V

 

(

 

t

 

). We can also perform the reverse process: if we know the rate of change, we can
calculate changes of volume. A diagram shows how this works. First, we consider the
case of constant rate of change. In this case the change of volume must be equal to the
product of rate of change and time span 

 

∆

 

t

 

:

 

(1.17)

 

Graphically speaking, 

 

∆

 

V

 

 is equal to the area of the rectangle between the straight line

 

V

 

(

 

t

 

) and the 

 

t

 

–axis with width 

 

∆

 

t

 

. (See the left diagram of Fig.1.18.) In general, for ar-
bitrary functions 

 

V

 

(

 

t

 

), we have to determine the area between the curve 

 

V

 

(

 

t

 

) and the 

 

t

 

–
axis in the chosen time interval. (See the diagram on the right of Fig.1.18.) One approx-
imate method of determining the area bounded by a curve is discussed below.

Assume that a process specifies the rate of change of the volume of a fluid as a function
of time. From this we can recreate the volume as a function of time if we also know the

˙.V

 

FIGURE 1.16.

 

The slope of a curve 
can be approximated by the slope of 
a straight line connecting two neigh-
boring points. The smaller the inter-
val 

 

∆t, the better the approximation.

V

t

∆V

∆t

V̇
V

t

V V

t t
≈ = −

−
∆
∆

2 1

2 1

V̇ dV dt≡

 

FIGURE 1.17.

 

The rate of change of 
volume is itself a function of time. It 
can be found graphically from the 
curve 

 

V(t) by drawing several tan-
gents and determining their slopes. 
Note that the rate of change is nega-
tive for sections of 

 

V(t) where V is 
decreasing, i.e., where the tangent is 
sloping.

V̇
t

V

t

∆ ∆V V t= ˙

V̇

t

∆V

∆t t∆t

∆V

V̇

 

FIGURE 1.18.

 

The change of vol-
ume can be determined from the dia-
gram of 

 

dV/dt as a function of time. 
In general, the change of 

 

V in time 
span 

 

∆t is equal to the are between 
the curve of 

 

V(t) and the t–axis for 
the time interval.
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value of 

 

V

 

 at the beginning, i.e., the initial value 

 

V

 

o

 

. The procedure works as follows
(Fig.1.19). In the diagram for 

 

dV/dt

 

, choose a (small) time step 

 

∆

 

t

 

 and determine the

area of a rectangle with a height equal to the average value of the rate of change for the
first interval. This approximately represents the change of 

 

V

 

 during 

 

∆

 

t

 

:

 

(1.18)

 

(Note that this equation returns the correct value of the change of 

 

V

 

 only if the volume
is a linear function of time.) Now move to the diagram which will contain 

 

V

 

(

 

t

 

) and in-
dicate 

 

V

 

o

 

 on the vertical axis. Then move horizontally and vertically by a distance 

 

∆

 

t

 

and 

 

∆

 

V

 

, respectively. Repeat the process for consecutive rectangles in the diagram for

 

dV/dt

 

, and you will trace an approximation to the function 

 

V

 

(

 

t

 

).

1. What is the meaning of volume, change of volume, and rate of change of
volume? How can you determine the rate of change from V(t)?

2. How do you calculate the change of volume for a time span if the rate of
change is known? What additional value needs to be known if you want
to determine the volume as a function of time?

3. If the rate of change of volume is negative, what sign should the area be-
tween the curve of dV/dt and the t-axis have?

1. Volume measures the quantity of a fluid inside a system; the change of
volume is the difference of a value of volume at t2 and one at an earlier
time t1; the rate of change measures how fast the volume is changing in
a process. The latter is equal to the slope of the tangent to V(t).

2. The change of volume is equal to the area between the curve dV/dt and
the t–axis for the interval ∆t. In addition to the rate of change as a func-
tion of time we need to know the initial value of the volume.

3. For negative rates of change, the curve is below the axis, and the change is negative.

V̇

t

t

V

Vo

∆V

∆t

∆t
∆V

t

t

V

Vo

∆V

∆t

∆t
∆V

V̇

 

FIGURE 1.19.

 

An area between the 
curve representing the rate of change 
of volume and the 

 

t–axis in an inter-
val 

 

∆t yields the change of V for the 
particular interval. By dividing the 
time axis into many small intervals, 
and calculating the areas of narrow 
rectangles, we can construct 

 

V(t) if 
we know the initial value 

 

Vo. 

∆ ∆V V t≈ ˙

 

Q

 

A
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EXAMPLE 1.1. Graphical determination of rate of change of volume.

The volume of water in a lake is known in graphical form as a function of time. a) Determine
the mass of the fluid at t = 6.0·104 s. b) Determine the rate of change of the volume for a few
points by graphical means and transfer them to a graph of dV/dt versus t. Is there a simple func-
tion which fits the points? c) Explain the meaning of the different signs of dV/dt, and of the min-
imum of the curve V(t). 

SOLUTION: a) The mass for a given volume is calculated with the help of Eq.(1.13). The density
of water is 1000 kg/m3. With a volume of 1750 m3 read off the graph we get

b) Draw tangents to the curve at a few points as carefully as possible. For the one at t = 0 s, the
slope is determined as follows: for a base line of ∆t = 9.0·104s, the change of V is ∆V = – 500
m3. This yields a value of – 5.5·10–3m3/s. A straight line seems to fit the data points in the second
graph very well.

c) The volume decreases for the first 1.1·105s corresponding to negative values of the rate of
change. After this, the volume increases which means that the rate of change must be positive.
At the point in time where V(t) has a minimum, the rate of change is zero.

 

B

EXAMPLE 1.2. Finding the volume from the rate of change.

The rate of change of volume of water in a lake is as shown in the figure; it increases linearly
from 0.0025 m3/s to 0.0075 m3/s in 1.6o·105 s. Determine the volume analytically as a function
of time. The initial value is Vo = 1000 m3.

SOLUTION: We can easily solve the problem formally since the rate of change is a linear func-
tion of time. Therefore, we can find the corresponding formula for the area between dV/dt and
the t–axis. This area represents the change of volume from 0 s to t.

The rate of change is the following function of time:

The area to be calculated is that of a trapeze going from 0 s to t. The volume at t is found by
adding the initial volume Vo:

 

B
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Flows: Currents and Amounts Exchanged

 

Volume and rate of change of volume are the quantities that have to do with the system
content only. For a complete description of dynamical processes we also have to be
able to describe the interaction of the system with the environment which is done with
the help of the flows of fluids.

 

Flows, currents, fluxes

 

. Flows of fluids are easily visualized. When we stand next to
streams and rivers, or pipes leading into fountains, we can get a good feeling for the
magnitude of a current (Fig.1.20). The abstract quantity measuring a current is called
a 

 

flux

 

. A 

 

flux of volume

 

 is given the symbol 

 

I

 

V

 

,  and its units are m

 

3

 

/s. Fluxes are mea-

sured at surfaces cutting through currents. The surface is given an orientation indicated
by a vector perpendicular to the surface area, and a flow going in the direction of this
vector is given a positive flux (Fig.1.21); a flow going in the opposite direction is mea-
sured in terms of a negative flux. Note that the closed surface of a body or a region of
space can be given an orientation either outward or inward. There are different customs
in this respect. Physicists and mathematicians often take the outward normal as the
positive direction, in engineering it often is the inward direction which is given a pos-
itive value. We shall choose the latter convention, which means that the flux associated
with a flow into a system is counted as a positive quantity.

 

The quantity exchang ed with a fl ow.

 

 Knowing the flux of a current of fluid allows us
to calculate how much is flowing across a surface in a given time span. If the flux is
constant in time, this is particularly simple. The quantity 

 

V

 

e

 

 exchange with a current of
volume flux 

 

I

 

V

 

 is given by

 

(1.19)

 

If the flux is variable, the determination of the amount exchanged is performed in ex-
actly the same manner how we determine changes of volume from the rate of change
(Fig.1.18). We simply have to draw the flux as a function of time and calculate the area
between the curve 

 

I

 

V

 

(

 

t

 

) and the 

 

t

 

-axis for the period of time considered in the problem
(Fig.1.22).

 

Measurement of fluxes

 

. There are several ways of measuring fluxes of fluids in prac-
tise. The simplest, but not necessarily the most enlightening, is this. We can let a cur-
rent flow for short amounts of time, every time measuring how much water has been
transported. The amount transported divided by the time span used yields an approxi-
mate value, i.e., the average value, of the flux. There are more direct ways, however, to

t

IV

t

IV

t

IVFIGURE 1.20.

 

Examples of fluxes as 
functions of time. A flux measures 
the magnitude of a flow at a given 
surface where the sign of the flux de-
notes the direction of flow with re-
spect to the orientation of the 
surface.

FIGURE 1.21.

 

Examples of fluxes as 
functions of time. A flux measures 
the magnitude of a flow at a given 
surface where the sign of the flux de-
notes the direction of flow with re-
spect to the orientation of the 
surface.

Normal

vector

Current

Surface

V t t I te V1 2→( ) = ∆

t∆t t

IV IV

t1

t2
Ve

Ve

FIGURE 1.22.

 

The same mathemati-
cal operation which is used to calcu-
late changes of volume also yields 
the volume exchanged with a cur-
rent. Instead of the rate of change we 
have the flux as a function of time.
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measure a flux in the laboratory. Certain sensors directly detect the flow of a fluid, rath-
er than amounts transported. One such example is a sensor using the principle of elec-
tromagnetic induction (Chapter 33).

 

Accounting: The Law of Balance of Volume

 

Storage and flow are the two phenomena which combine to make dynamic processes
possible. We know that there exists a relation between flows of a fluid with respect to
a fluid store and how the volume of the fluid is changing in that storage device. This
relation is called the 

 

law of balance of volume

 

 (of a fluid).

Experience tells us that all the flows together are responsible for the change of the
amount of fluid in a store. The larger the sum of all currents, the faster the volume of
fluid must change. This observation may be summarized as follows:

There are several important points to be noted about a law of balance such as the one
in Eq.(1.20):

 

R

 

The fluxes of currents flowing into and out of the system (and the associated
amounts which are exchanged) have to be given the proper signs: positive for
inflow, negative for outflow.

 

R

 

A law of balance is not a definition of a current: 

 

dV/dt

 

 is 

 

not

 

 a current 

 

I

 

V

 

.  In
fact, 

 

dV/dt

 

 is not even the sum of all fluxes (it is not identical to the sum of the
fluxes), its value is only 

 

equal to

 

 this quantity. 

 

R

 

A law of balance can be used in two ways. First, if the sum of all fluxes is
known we also know the rate of change of the system content. Second, if the
rate of change of volume of a system is known, and if we know all but one cur-
rent, the missing flux can be calculated.

 

R

 

By itself, a law of balance is not of much use. Only if it is combined with spe-
cial knowledge about the fluxes can it be used for calculations.

 

R

 

The law containing the rate of change and the fluxes is called the 

 

instantaneous

 

form of the law of balance; it holds for every moment in time. Its counterpart,
i.e., Eq.(1.21), is called the 

 

integrated

 

 form of the law.

FIGURE 1.23.

 

Laws of balance com-
bine the two sides of dynamical pro-
cesses: storage and transport 
processes. They tell us how the pro-
cesses—expressed in terms of flux-
es—determine what is happening to 
the system content—expressed in 
terms of the rate of change of the 
content. The lower part of the figure 
is the system dynamics representa-
tion of the law of balance.

SYSTEM

dV/dt

IV1

IV2

IV3
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B

 

The sum of all fluxes with respect to the store tells us how fast the stored
amount is changing. In formal terms, this means that the rate of change of
volume of a system must be equal to the sum of all fluxes of volume with
respect to the system:

(1.20)

Alternatively, the law of balance of volume also can be expressed in terms
of the change of volume and the net volume exchanged as a result of the
fluxes: 

(1.21)

This form holds for a certain time span ∆t, whereas Eq.(1.20) holds for any
moment in time.
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1. Why isn’t a current a rate of change? Why isn’t the volume exchanged a
change of volume?

2. Describe the current whose flux is shown in the second diagram of Fig.
1.20. What does a negative flux mean?

3. The rate of change of volume is known. What does this tell you about the
fluxes?

1. A current is a fundamental quantity introduced for describing a transport
process. A rate of change is a quantity which describes a system and its
content. The same can be said about the integrated quantities.

2. First the magnitude of the current is constant, and the flow is in the di-
rection indicating the orientation of the surface are through which the
current flows. Then the magnitude decreases linearly. After it has be-
come zero, the flux becomes zero, i.e., the flow reverses its direction.

3. If the rate of change is known, only the sum of the fluxes can be determined from the law of
balance. Information on single flows must be obtained by special laws for the flows.

EXAMPLE 1.3. A simple case of balancing the volume of water.

Consider a water container with an inlet and an outlet. The flow at the inlet is constant and equal
to 10 liters/s. The volume is known to change at a rate of – 13 liters/s. a) Determine the flux of
volume associate with the outlet; express it in terms of the flux of mass. b) How much water is
exchanged with the current flowing out of the container in the first minute? c) Determine the
volume as a function of time. The initial volume is 20 m3.

SOLUTION: a) The law of balance of volume in its instantaneous form lets us determine the
missing flux:

b) The amount exchanged is calculated according to Eq.(1.19):

c) The change of volume can be calculate in a couple of ways. The most direct is

 

B

 

1.3 Pressure and the Hydraulic Driving Force

 

Normally, water or oil would not flow by themselves. This simple observation means
that other processes are responsible for driving the one we are interested in. We say that
they set up a driving force for the fluids to flow.
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Examples of Driving Forces

 

To be precise, there are two things fluids do not do by themselves here at the surface
of the Earth: they do not flow uphill, and they do not flow horizontally through pipes
and channels, if unaided. In the case of horizontal flow we say that fluid friction is the
reason why a flow must be forced (Section 1.4).

There are several concrete circumstances or setups which are used to force fluid flow
where this is necessary. In nature, we observe mostly two cases. First, water flows
downhill—aided by gravity—leading to other flows. Second, in the atmosphere, areas
of high pressure build up and the air flows to locations where the pressure is lower. In
technical settings we can use containers where the pressure is higher at the bottom of
the fluid, pressure vessels, and pumps (Fig.1.24). These observations suggest that pres-
sure differences are the cause of fluid flow which would not take place otherwise.
Again, the example of two communicating fluid tanks is most helpful in convincing us
of this. (See the first two entries in Table I.1 in the Introduction.) The fluid will only
flow through the connecting pipe if there is a difference of levels (pressures) from one
end of the pipe to the other. The process of flow stops when the pressure difference has
become zero.

 

The Pressure of Fluids

 

Pressure is one of these fundamental physical quantities for which we have good ev-
eryday knowledge. We know this quantity from the atmosphere and the lakes. In the
atmosphere, pressure changes from point to point, and in lakes the pressure of the wa-
ter increases downward. Pressure is a quantity describing a hydraulic state of a fluid at
every point inside.

Pressure is measured in Pascal (Pa). Going vertically down in the water of a lake here
on our planet makes the pressure increase by about 10

 

4

 

 Pa (Fig.1.25). The pressure of
the air in the atmosphere is around 10

 

5

 

 Pa at sea level. The pressure increases linearly
downward in an incompressible fluid. A proof will be given in Chapter 29:

 

(1.22)

 

Here, 

 

g

 

 measures the strength of the gravitational field. Fluid levels in vertical and U-
tubes make for one of the simplest devices for measuring pressures (Fig.1.26).

FIGURE 1.24.

 

For the fluid to flow 
through the pipe from 

 

A to B, the 
pressure has to be higher at 

 

A. A con-
tainer with fluid, a pressure vessel 
(containing a fluid a high pressure), 
or a pump can be used to set up such 
a pressure difference.

Pressure vessel

Pump

B
A

B
A

B
A

Open container

P P gza= + ρ

FIGURE 1.25.

 

In incompressible flu-
ids at the surface of the Earth, the 
pressure increases linearly down-
ward. 

 

Pa is the ambient pressure (air 
pressure) at the surface of the lake.

z

P

Pa

Pa
z z = 0

P P g ha= + ρ ∆ 1

P g ha = ρ ∆

∆h

∆h1 ∆h2

FIGURE 1.26.

 

Tubes filled with liq-
uids such as water or mercury serve 
as measuring devices for pressure. 
There is no air above the fluid in the 
closed section of the U-tube.
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Pressure Differences in Hydraulic Circuits

 

If we want to be able to specify the conditions for the flow of fluids we must be able to
determine pressures and pressure differences along the paths taken by the fluids. Take
as an example the hydraulic setup shown in (Fig.1.27). 

A fluid such as oil flows from 

 

A

 

 to 

 

B

 

 through a pump, from there through a first pipe
and into the tank. At 

 

C

 

, the pipe branches off, and there is a second pipe at ground level
leaving from point 

 

C

 

.

We want to determine the values of the pressure at the points indicated in the figure.
First, note that the pressure must be equal at 

 

A

 

, 

 

D

 

, and 

 

D*

 

, since there the fluid com-
municated with the air and has the same pressure as the surrounding air (

 

P

 

a

 

). In fact,
we can imagine a closed hydraulic loop from 

 

A

 

 to 

 

B

 

 to 

 

C

 

 up to 

 

D

 

 and back through the
air to 

 

A

 

. Naturally, we expect to be back at the same hydraulic level, i.e., the pressure,
once we have completed the loop. Then there is a second branch from 

 

C

 

 to 

 

D*

 

 which
is in parallel to the one from 

 

C

 

 up to 

 

D

 

 in the tank. Therefore, there is a second closed
loop from 

 

A

 

 through 

 

B

 

, 

 

C

 

, 

 

D*

 

, and back to 

 

A

 

. We can even identify a third closed loop
from 

 

C

 

 to 

 

D

 

, and from there via the air to 

 

D*

 

. From what we have said we expect an
important rule to hold for closed hydraulic circuits:

Now let us have a closer look at the segments of the paths in our example. The fluid is
taken up—maybe from a shallow container exposed to the air—at pressure 

 

P

 

a

 

. If the
segment of pipe leading to 

 

A

 

 is short, we expect the pressure at A to be 

 

P

 

a

 

 as well. The
purpose of the pump is to increase the pressure of the fluid to a value at 

 

B

 

 such that it
can flow as it is supposed to. After 

 

B

 

, the pressure of the fluid is expected to drop be-
cause of hydraulic friction in the pipe leading to 

 

C

 

. From 

 

C

 

 to 

 

D

 

, we go vertically up

FIGURE 1.27.

 

Knowing pressures 
and pressure differences along flows 
is very important in modeling hy-
draulic systems. Here, a few points 
have been indicated along the fluid 
paths. The pipes are open at 

 

A and 
D*

 

, as is the tank. The tank is filled 
up to the level indicated by point 

 

D. 
The graph next to the picture dis-
plays a qualitative sketch of the pres-
sure at different points in the fluid. 
The air pressure is taken to be 

 

Pa.

D*

Tank

D
C

B

A

Pump

Position

P

Pa

A B C D
D*

 

B

 

No matter how simple or how complicated a closed loop, the sum of all
pressure differences between points along the loop must be zero:

(1.23)

We will find an equivalent rule which holds for electric circuits. There it is
called Kirchhoff’s second rule (Chapter 2).

0 ∆Pi

i

 

1=

N

∑=

FIGURE 1.28.

 

Pressure differences 
along a closed hydraulic loop add up 
to zero. A blue arrow pointing in the 
direction of flow denotes decreasing 
pressure, one going against the cur-
rent denotes increasing pressure.
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in a fluid column. Since the pressure increases if we go down in a fluid, we know that
here the pressure must drop once more, this time back to air pressure. The same drop
of pressure must occur from 

 

C

 

 to 

 

D*

 

 because at 

 

D*

 

 we are back at 

 

P

 

a

 

. We recognize
that the pressure differences in parallel branches must be equal.

1. A device such as the U-tube of Fig.1.26—filled with mercury—makes a
simple tool for measuring air pressure. If the pressure of the air is 0.90
bar (1 bar equals 105 Pa), how high should the mercury column on the
left rise compared to the one on the right?

2. How large is the pressure drop from C to D*  in Fig.1.27? Point D is at
height h above ground, and the density of the fluid is ρ. Which laws or
relations are necessary for determining the answer?

1. Since the pressure is equal at equal levels in the mercury, the pressure at
depth ∆h in the left column must be equal to the pressure of the air. With
a density of 13,600 kg/m3, we get ∆h = 0.67 m. (With g = 9.81 N/kg.)

2. According to the loop rule in Eq.(1.23) the pressure difference from C to
D*  must be equal to the one from C to D. Finally, with Eq.(1.22), we
have ∆PC–D = – ρg|∆h|. Note that the difference is negative.

1.4 Currents: Driving Forces and Resistance

The pressure can change for numerous reasons in a fluid, one of which is fluid friction.
When fluids flow steadily and horizontally, it is found that the pressure decreases in the
direction of flow (Fig.1.26 on the right). We say that a pressure gradient builds up as a
result of hydraulic resistance when a flow is forced through a pipe (Fig.1.29).

Current–Pressure Characteristic Curves

We expect a relation between the volume flux through the pipe and the pressure drop
across the length of the pipe. Naturally, this relation should be different for different
circumstances. It depends upon the fluid property which leads to fluid friction, on the

 

Q

 

A

FIGURE 1.29.

 

IV– ∆P characteristic 
curves for different steady flows 
through the same pipe. (Length: 10.0 
m, radius: 0.020 m.) The lower 
straight line is for a fairly viscous oil 
(viscosity: 0.20 Pa·s, density: 800 
kg/m

 

3) for laminar flow. The upper 
two are for water (viscosity: 0.0010 
Pa·s) for turbulent flow. The curve in 
the middle is for a rough pipe, the up-
per one for a smooth pipe.
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size of the pipe (length and radius), and the type of flow (laminar or turbulent, or flow
through a sand filled pipe). The relation can be displayed in diagram showing volume
flux as a function of pressure drop. It is called an 

 

I

 

V

 

–

 

∆

 

P

 

 

 

characteristic

 

 

 

curve

 

.

 

Driving Force and Hydraulic Resistance

 

Fig.1.29 shows three examples of 

 

I

 

V

 

–

 

∆

 

P

 

 characteristic curve for liquids flowing
steadily through a pipe. There is a simple graphic way of describing the relationship
between flux and pressure drop. Since the phenomenon is caused by friction which
makes the pressure difference necessary, we say that the current is the result of the in-
terplay between a 

 

driving force

 

 and a 

 

resistance

 

. The larger the driving force, i.e., the
pressure difference, the larger the flux, and the larger the resistance the smaller the cur-
rent. Alternatively, instead of talking about a resistance, we can introduce a 

 

conduc-
tance

 

. The current is imagined to be the result of a driving force and a factor telling us
how easy it is to transfer the fluid. This image may be expressed as follows:

 

∆

 

P

 

R

 

 is the pressure drop (in the direction of flow) as the result of the resistance. Obvi-
ously, the resistance is measured in Pa·s/m

 

3

 

.

We can now answer the question if there are conditions in horizontal steady flow where
there is no need for a pressure difference as a driving force. We can see from Eq.(1.25)
that the hydraulic resistance would have to be zero. Fluids with this property do not
exist, but we can at least imagine them. Such fluids would be called 

 

ideal

 

.

Note that the flow which has a linear characteristic curve in Fig.1.29 (the lowermost
straight line) has a constant conductance or resistance, while for the other two flows
the resistance varies as a function of the difference of pressures.

 

Production of Heat in Flow With Friction

 

The pressure may change in a fluid for many different reasons. Therefore it is important
to characterize the phenomenon described in this section more carefully. First we note
that the pressure difference in the direction of flow is negative—the fluid flows “down-
hill”. This, however, does not suffice for a complete physical description. Fluids flow-
ing from points of high to points of low pressure may be found in different situations
such as flow through turbines (Section 1.6). Also, a pressure drop may result in the
speeding up of a fluid (Chapter 3). 

In resistive flow, on the other hand, the only consequence of the process is the produc-
tion of heat. Therefore, we may say that fluid resistance is associated with 

 

dissipation

 

(another term for production of heat; see Chapters 8–10). Consequently, ideal fluids do
not produce any heat when flowing.

 

B

 

If fluid friction leads to a pressure drop in the direction of flow, we may
express the current of fluid in terms of the driving force, i.e., the pressure
difference along the flow as a result of friction, and a factor called the con-
ductance GV:

(1.24)

or, equivalently, 

(1.25)

where RV = 1/GV is the called the hydraulic resistance.

I V G– V∆PR=

I V
1

RV
------∆PR–=
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Laminar Flow and the Law of Hagen and Poiseuille

 

The type of flow has a strong influence upon the relation between flux and pressure
drop. (See the graph in Fig.1.29.) We shall restrict our attention to flow through pipes
with constant diameter, and to steady flow. Steady means that flow properties do not
change with time. In an empty pipe, the flow of a fluid is laminar if the flow speed is
low. By the way, the average flow speed for a cross section is related to the flux by: 

 

(1.26)

 

Laminar flow is most easily observed in the first few centimeters of smoke rising from
a burning cigarette. If we could see stream lines we would see that they are all parallel;
put differently, adjacent packets of the fluid do not mix. If the speed of flow is in-
creased, there is a relatively sharp transition to turbulent, chaotic motion where the flu-
id is vigorously mixed. If everything else is kept constant, the onset of turbulence
depends upon the viscosity of the fluid: the more viscous, the longer the flow stays lam-
inar. Water has such a low viscosity that its flow through an otherwise empty pipe is
practically turbulent all the time for reasonable values of the speed of flow. Some val-
ues of the viscosity of different fluids are listed in Table 1.2.

Experiments show that in laminar flow the relation between flux and pressure drop is
linear as shown in the lower line in Fig.1.29. The conductance is expected to depend
upon the radius and the length of the pipe, and the viscosity of the fluid. Indeed, we
should expect it to increase with the former, and to decrease with the latter two. The
concrete expression which holds in this case is called the 

 

law of Hagen and Poiseuille

 

:

 

(1.27)

 

Here, 

 

η

 

 is the viscosity, and 

 

r

 

 and 

 

l

 

 are the radius and the length of the pipe, respective-
ly. A derivation of this relation will be given in Chapter 29. The relation of Hagen and
Poiseuille shows that a fluid with a viscosity equal to zero would be ideal.

 

Turbulent Flow

 

In the flow of fluids through pipes, turbulence occurs if a certain combination of fluid
speed, pipe diameter, and viscosity of the fluid surpasses a critical value. For a given
pipe and fluid, therefore, the speed of flow is the decisive factor. For turbulent flow, and
for the transition from laminar to turbulent conditions, circumstances are much more
complex. For one, the relation between flux and pressure drop now also depends upon
the roughness of the pipe. We will not go into details here which are of great interest
in engineering. In general, relations are presented in graphical or tabular form.

1. Devices such as pumps also have IV– ∆P characteristic curves: all other
factors kept constant, the flow depends upon the pressure difference
across the device. Would it make sense to introduce a resistance to de-
scribe the phenomena associated with such devices?

2. A pump is fitted to the smooth pipe described in Fig.1.29. Water is to be
pumped horizontally through it. The pump has the IV– ∆P characteristic
curve shown in the upper graph of Fig.1.30. What values will the pres-
sure differences and flux in the system take?

3. In laminar flow, would two identical pipes in parallel or one pipe with the cross section of
two have the smaller resistance?

v

I AV = v

TABLE 1.2. Viscosity at 20°C

Fluid V iscosity 

 

η / Pa·s

Castor oil 0.99

Glycerine 1.48

Olive oil 0.081

Mercury 0.00155

Water 0.00100

G
r

lV = π
η

4

8

 

Q

FIGURE 1.30.
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1. No, it does not make any sense. A resistance is introduced to describe the
effects of friction upon the flow, an effect which leads to the production
of heat. These phenomena have nothing to do with what happens in a
pump of in a turbine.

2. The pressure difference across the pump must be equal in magnitude to
the pressure drop in the pipe. We can find the answer to the question by
superimposing the curves of the flow and the pump. The values will be
those of the intersection of the curves (0.011 m

 

3

 

/s and 1.2·10

 

5

 

 Pa, respectively).

3. According to the law of Hagen and Poiseuille in Eq.(1.27), doubling the cross section would
lead to a reduction of the resistance by a factor of four. On the other hand, two equal pipes in
parallel would only have half the resistance of a single one.

EXAMPLE 1.4. Pumping water through a smooth pipe.

Water is pumped 5 meters upward through the rough pipe with a length of 10 m and a radius of
2 cm described in Fig.1.29. We would like to have a flux of 8.0 liters/s. a) What is the pressure
difference the pump should build up for steady flow? b) Calculate the resistance and conduc-
tance. c) How large is the average speed of flow for a cross section of the pipe? d) If the flow
was still laminar, would the flux be higher or lower for the given pressure difference?

SOLUTION: a) First we use the loop rule as in Eq.(1.23) for a closed loop from A to B and C,
and back to A via the air. The pressure of the fluid increases from A to B (this is a value we are
looking for), and it decreases back to Pa from B to C. The pressure drop is due to two processes:
first, we have fluid resistance, second, the fluid is lifted in the gravitational field:

where ∆PP and ∆Ph are the pressure changes due to the pump and the vertical rise, respectively.
For ∆PR we look in the diagram for the flow characteristic curve (middle curve in Fig.1.29). A
flux of 8.0 liters/s corresponds to 0.0080 m3/s which yields a value of – 1.5·105 Pa for the pres-
sure drop as a result of friction. For ∆Ph we have

Therefore, the pump must raise the pressure of the fluid by 1.99·105 Pa = 1.99 bar.

b) Conductance and resistance are calculated according to the conductance or resistance laws in
Eqs.(1.24) or (1.25):

c) Eq.(1.26) yields

d) For laminar flow we calculate the conductance (or the resistance) according to Eq.(1.27).
From Eq.(1.24) we obtain

The viscosity was taken from Table 1.2. The value of the flux is about 100 times larger than the
actual one which is the consequence of underestimating the fluid resistance by a factor of 100.
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EXAMPLE 1.5. Parallel and series connections of pipes for laminar flow.

Derive the relations for the hydraulic resistance of two parallel pipes, or two pipes in series, for
laminar flow. Neglect the influence upon flow of bends and connectors in the pipe systems.

SOLUTION: For parallel pipes, ∆PR is the same for both of them, while the current through both
is the sum of the single currents. Therefore:

To obtain the equivalent resistance for parallel pipes we have to add the inverse of the single
resistances and then calculate the inverse.

For pipes connected in series, the calculation proceeds analogously. Note that here the current
is the same for both, while the total pressure drop is the sum of the single values:

The total resistance is the sum of the resistances of the single pipes. Note that the results hold in
equivalent form for more than two pipes.

 

B

 

1.5 The Hydraulic Capacitance

 

When we built the model for the dynamics of the two communicating lakes we saw that
we needed to relate pressure differences to the amount of water stored in the lakes. This
is an example of the more general problem of how a level quantity changes with the
amount stored in a system. Solving this problem will conclude our first investigation
of fluid flow. Further issues of hydraulics will be discussed in Chapters 3 and 4.

 

Volume and Pressure in Fluid Containers

 

Containers for fluids are simple hydraulic devices which display the relationship just
mentioned. Pressure vessels are another type of system where amounts of fluids stored
and the pressure of the fluids are related. Let us first consider the case of the open fluid
containers in Fig.1.31.

We need to know the fluid pressure at the bottom of a container. The problem is simple
to solve for straight walled tanks (the leftmost container in Fig.1.31). There we have

 

(1.28)
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For a given fluid, the 
pressure at the bottom of a container 
only depends upon the height of the 
fluid column. For a given container 
this quantity is related to the amount 
of fluid stored.
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if we neglect the pressure at the surface of the fluid. For more general shapes of tanks
the problem is cast in a different form. We consider how much the pressure of the fluid
column changes if the volume is changed. The relation between the two quantities de-
pends upon the particular container. If the tank is wide at the current level of fluid, it
takes more fluid for a certain change of pressure. If it is narrow, it takes less. There is
a quantity pertaining to the tank and the fluid which relates changes of pressure to
changes of volume:

 

P

 

C

 

 is the pressure related to the capacitance. In general, 

 

K

 

V

 

 is variable: it depends upon
the cross section of the tank. For relatively small changes for which 

 

K

 

V

 

 can be consid-
ered constant we can write Eq.(1.29) in the form

 

(1.30)

 

where 

 

∆

 

P

 

C

 

 is the change of pressure as the consequence of amounts of fluid stored in
a container. Eq.(1.29) tells us that—for the straight walled tank—the hydraulic capac-
itance must be the factor 

 

A

 

/(

 

ρ

 

g

 

), and it is constant. For the general case, we obtain es-
sentially the same answer, only with 

 

A

 

 replaced by the variable cross section 

 

A

 

(

 

h

 

):

 

(1.31)

 

The Graphical Meaning of Capacitance

 

There is a simple graphical procedure of relating the volume stored to the pressure of
the fluid column which derives directly from the image of the fluid container
(Fig.1.32). If we draw the pressure as a function of capacitance, we get a graph resem-
bling the shape of the container. Remember that the pressure is proportional to the
height of the fluid in the tank, while the capacitance is proportional to the cross section
at a given height (i.e., pressure). The volume of fluid is read from the graph as the area
between the curve 

 

P

 

(

 

K

 

V

 

) and the 

 

P

 

–axis up to pressure 

 

P

 

. Changes in volume are equal
to the area of small rectangles of width 

 

∆

 

P

 

 and height 

 

K

 

V

 

, which we can see by inter-
preting Eq.(1.30) graphically.

 

General Hydraulic Capacitance

 

Finally, let us consider a different kind of fluid storage which nevertheless still displays
the same general relationship between storage and pressure, and which, therefore, is
described also in terms of a capacitance. Take a pressure vessel for liquids with a de-
formable membrane. The simplest version of this container is a small rubber balloon
filled with water. Adding more water will increase the pressure of the liquid, and there
exists a general relation of the form of Eq.(1.29). The characteristic curve of the rubber
membrane will determine the capacitance as a function of pressure for this container.
We can even extend this example to pressure vessels for gases. Usually, however, we
work with constant volumes as we press more gas into the tank. In this case we should
express the capacitance in terms of changes of the amount of gas, rather than the vol-
ume, and changes of pressure.

 

B

 

The quantity which tells us—for a given container—how fast the volume
of fluid stored must change if we want to have a certain rate of change of
the pressure at the bottom, is called the hydraulic capacitance KV:

(1.29)dV dt⁄ KVdP dt

 

⁄=

∆ ∆V K PV C=

K
A h

gV = ( )
ρ

FIGURE 1.32.

 

A graph of P versus 

 

K

 

V—which resembles the shape of 
the container—is used to determine 
volume as a function of pressure, or 
volume changes as a function of 
changes of pressure. The upper dia-
gram is the source of this image: in 
the case of a tank with straight walls, 
the content of the symbolic container 
represents the volume, while the bot-
tom and the fluid level represent the 
capacitance and the pressure of the 
fluid, respectively.
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1. What is the meaning of the hydraulic capacitance? Explain the difference
for containers storing liquid vertically, and for pressure vessels for liq-
uids and gases.

2. What is the shape of the liquid container having a capacitance such as the
one in Fig.1.32? What is the meaning of the horizontal distance between
the P–axis and the P–KV curve? What is this quantity proportional to?

3. Does the general definition of capacitance relate volume to pressure, or changes of volume
to changes of pressure? Does capacitance mean how much a system can store?

1. Hydraulic capacitance is the quantity which relates the rate of change of
pressure to how fast the volume changes. This form of the relation is val-
id also for pressure vessels. In the case of gases stored at constant volume
we should replace the volume of the fluid by amount of gas.

2. The container gets narrower at the top. The distance in the graph is the
capacitance at a given pressure (of the liquid at the bottom). It is propor-
tional to the cross section of the tank at the given height.

3. It relates changes, rather than the values themselves. No, it does not.

EXAMPLE 1.6. Fluid vessels and flow.

Consider a pressure vessel connected to an open, straight-walled container by a pipe. The con-
tainer is open to the air which has a pressure of 1.0 bar. The system contains oil with a density
of 800 kg/m3 and a viscosity of 0.20 Pa·s. The pressure-capacitance relation for the pressure ves-
sel is given in the accompanying graph. The cross section of the tank is 0.080 m2. The length
and the radius of the pipe measure 2.0 m and 0.020 m, respectively. a) At a certain point in time
the pressure vessel contains 0.15 m3 of oil, whereas the tank has stored 0.20 m3. Calculate the
flux of oil through the pipe. In which direction does the oil flow? b) What will the final level of
oil in the container be?

SOLUTION: a) We first calculate the pressure of the fluid in the vessel from the pressure-capac-
itance curve. Then we determine the level and the pressure of the oil in the tank. The difference
of pressures lets us calculate the flux if we know the hydraulic resistance for the flow through
the pipe. The latter will be given by the law of Hagen and Poiseuille.

The lowest possible pressure of the oil in the pressure vessel is 105 Pa. Therefore, we calculate
the volume of fluid in the container by the area between the pressure-capacitance curve and the
vertical axis starting at Pa = 105 Pa. See Fig.1.32. Since the capacitance curve is a linear function,
namely

the calculation is simple (you can read it from the graph):

Here, Pv denotes the pressure of the liquid in the pressure vessel. The pressure of the fluid at the
bottom of the tank, on the other hand, may be calculated with the help of the capacitance of this
container:
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Obviously, the oil must flow from the pressure vessel to the tank. To compute the flux of oil we
need the hydraulic resistance:

from which we conclude that

b) Oil will flow from the vessel to the tank until the fluid pressures in both of them have become
equal. The outcome of this process can be represented in the pressure-capacitance diagram.
Since the changes of volume associated with changes of pressure are shown as areas, we can see
that the final pressure attained will make the absolute values of the volume changes equal for the
containers (balance of volume):

The index 

 

t

 

 denotes the tank. These changes can now be expressed in terms of the changes of
pressure:

where 

 

P

 

f

 

 is the final pressure attained. Solution of the equation leads to 

 

P

 

f

 

 = 126 kPa, leading to
a final value of 0.260 m

 

3

 

 of oil in the tank.

 

B

 

1.6 Diagrams for Modeling Hydraulic Processes

 

Diagrams are an important visual tool which helps in creating the abstractions neces-
sary for modeling of dynamical processes. Remember our basic image of how nature
works: flow, production, and storage of certain easily visualized quantities are the
cause of what we observe. Moreover, the quantities flow through differences of levels:
“downhill” for voluntary processes, “uphill” for involuntary ones.

Here we will study two types of diagrams helpful in constructing models. The first we
call a 

 

system diagram

 

, while the second—which we have already encountered in the
Introduction and this chapter—is the well known 

 

system dynamics diagram

 

.

 

System Diagrams

 

The goal is to represent the image underlying natural processes with the help of dia-
grams. Since flow, storage, and levels are the main concepts we deal with, we need a
tool for visualizing these. Here, we construct simple system diagrams for some of the
important hydraulic phenomena.

First, consider a fluid container with inlets and outlets. We are concerned with flow,
storage, and balance. A diagram for representing flow and storage—but not balance it-
self— starts with a box. Flows are visualized as arrows leading into or out of the box,
while storage is symbolized by a little container inside the box (Fig.1.33).

In a second step, we add the information concerning hydraulic levels, i.e., the pressure
of the fluid as it flows into or out of the system. The values of the pressure are those of
the fluid at the system boundary. Inside the system, the pressure may vary from point
to point. Flows and levels permit us to draw system diagrams of such fundamental hy-
draulic systems as turbines and pumps (Fig.1.35), and pipes (Fig.1.36).
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Symbolic representa-
tion of flow and storage in a system 
diagram. The diagram suggests a law 
of balance. This law, however, is bet-
ter represented by a system dynamics 
diagram.
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Note that system diagrams are snapshots: they do not show time evolution; rather, they
represent conditions at a fixed moment at various points in a system or combined sys-
tem. In general, they are not directly useful for calculations. Their strength lies in pre-
senting in a simple way the most important processes. They are a tool for talking
coherently about the problems posed—guiding us in the use of the systems view of
physical processes. They can be used as steps toward more formal representations of
what we see happening. The systems diagrams will be particularly useful when we in-
clude the discussion of energy with the description of the processes (Chapter 4).

 

System Dynamics Diagrams

 

If we wish to model the dynamical aspects of processes with the goal of calculating
system behavior, we have to turn to a tool which permits us to represent the relations
underlying nature. Hydraulics tells us what these relations are: 

 

1.

 

Laws of balance

 

 which relate the fluxes to the rate of change of system con-
tent. They serve as the backbone of any formulation of models of dynamical
processes.

 

2.

 

Capacitance laws

 

 which express fluid pressure in terms of the volume of
fluid stored.

 

3.

 

Resistance laws

 

 which relate flows to pressure drops, and the concrete rela-
tions for a particular type of flow.

 

4.

 

The 

 

loop rule

 

 which states that pressure differences along a closed loop add
up to zero.

System dynamics tools provide a small collection of building blocks which is all we
need to formulate our view of the dynamics of physical processes. This we have al-
ready seen by way of example in the Introduction and in Section 1.1.

FIGURE 1.34.

 

Adding the informa-
tion concerning hydraulic levels to 
the system diagram. The hydraulic 
level is measured by the pressure of 
the fluid.
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System diagrams of a 
turbine and a pump (from left to 
right). The system diagrams show 
flows and levels, and they indicate 
whether the flow goes up or down 
with respect to the hydraulic level. 
Flows going down are said to be vol-
untary hydraulic phenomena: they 
drive other processes. Flows going 
up are involuntary: they must be 
driven.

FIGURE 1.36.

 

System diagram of 
fluid flow with resistive characteris-
tic through a pipe. The fluid flows 
from a point of high to a point of low 
pressure.
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There are a few fundamental substructures of a model of hydraulic systems from which
complete—and complex—models can be built (Fig.1.37). These elements represent
the four relations listed above, i.e., the law of balance, the laws of capacitance and re-
sistance, and the loop rule.

 

System Dynamics Models of Hydraulic Processes

 

To demonstrate the use of these consider the example of a viscous oil flowing out of a
tank with a horizontal pipe fitted at the bottom, such as in Fig.1.24. All four substruc-
tures are needed, and the two parameters—capacitance and resistance—can be calcu-
lated from Eqs.(1.31) and (1.27). The system dynamics diagram is shown in Fig.1.38.

A system such as the one modeled in Fig.1.38 is called an 

 

RC

 

 

 

system

 

 in analogy to sys-
tems made up of resistors and capacitors in electricity. 

 

R

 

 stands for resistance, while 

 

C

 

denotes the capacitance. In Chapter 2 we will demonstrate how we can make use of the
analogies which are suggested by our systems view of nature. Chapter 3, finally, will
introduce us to another interesting system property—namely inductance.

FIGURE 1.37.

 

Four basic substruc-
tures of system dynamics models of 
hydraulic processes: the laws of bal-
ance, capacitance, resistance, and the 
loop rule.
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System dynamics di-
agram of a simple hydraulic prob-
lem. The diagram represents the 
process of draining of a tank with 
straight walls through a horizontal 
pipe fitted at the bottom (Fig.1.24). 
The flux–pressure characteristic 
curve is linear as in the law of Hagen 
and Poiseuille.
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EXAMPLE 1.7. Hydraulic circuit diagram.

Consider a hydraulic circuit consisting of a pump, turbine, pipes, and fluid storage as in the ac-
companying figure. Consider the fluid to be taken from and discharged to a large shallow pond
at ground level. Draw a flow diagram combining the system diagrams for each of the important
components.

SOLUTION: Let us begin with the pump. The pump, pipes leading to the storage tank, pipes
leading to the turbine, the turbine, and the pipes leading back to the pump form a closed circuit:
the elements are connected in series. The pond closes this loop. The pressure of the fluid is raised
in the pump. From there, the pressure decreases through the pipes and through the turbine.

The tank is connected in parallel to the circuit section A-B-C. In the fluid column, the pressure
decreases from PC to PA. Note that the fluid current splits at point C. The sum of the three fluxes
at C is equal to zero.

 

B

EXAMPLE 1.8. System dynamic model for filling a tank.

The pump in the system shown in Fig.1.27 is operated at constant pressure as the tank is filled.
The flow obeys the law of Hagen and Poiseuille. Assume the pipe from the pump to the tank and
the pipe leading away from the tank to be identical. a) Represent the processes with the help of
a system dynamics model diagram. b) To what height can the tank be filled? 

SOLUTION: a) The main features of the model are these. First, we represent the law of balance
of volume for the tank by a stock and a single flow (IV2 from point C in Fig.1.27 to the tank).
This current comes from the node at point C which is also represented by a stock.
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Since the node cannot store fluid, the three fluxes associated with point 

 

C

 

 satisfy the condition
that 

 

I

 

V

 

1

 

 equals the sum of 

 

I

 

V

 

2

 

 and 

 

I

 

V

 

3

 

. 

 

I

 

V

 

1

 

 and 

 

I

 

V

 

3

 

 can be calculated from the resistance law if the
pressure differences across the pipes from 

 

B

 

 to 

 

C

 

, and from 

 

C

 

 to 

 

D*

 

 are known. All we have to
do now is calculate 

 

P

 

B

 

 from knowing the pressure difference set up by the pump, and 

 

P

 

C

 

 from
the capacitance law for the tank.

b) The maximum height to which the tank can be filled depends upon the maximum pressure
difference available for the fluid column from 

 

C

 

 to 

 

D

 

. Since the tank and the second pipe are
connected in parallel, the pressure difference is the same as the one from 

 

C

 

 to 

 

D*

 

. The latter,
however, depends upon the current of fluid flowing through this pipe.Now, the current through
the second pipe must be equal to that through the pump and the first pipe; the reason is simply
that the fluid is not flowing any longer into the tank when the maximum height of the fluid col-
umn has been reached. Therefore, the fluid directly flows from the pump through 

 

C

 

 and out at

 

D*

 

. Since the pipes are identical, each of them takes half the pressure difference set up by the
pump. Obviously, we now have

from which we conclude that .

 

B

 

Chapter Summary

 

We have studied a small aspect of the general field of fluid flow which is called hydrau-
lics. Hydraulics studies fluids in controlled environments—pipes and containers—of-
ten for the purpose of technical applications. Despite its limitations, it tells us much
about the behavior of nature. The most important points to remember about hydraulic
processes are these:

 

R

 

Hydraulic processes have to do with the flow and the storage of amounts of flu-
id. If we consider only incompressible fluids such as water or oil, we can use
their volume as an easy measure of their amount. 

 

R

 

The fundamental behavior of fluids is expressed by the law of balance of vol-
ume. With incompressible fluids—and disregarding chemical reactions—the
volume of fluid in a system can only change as the result of inflow and outflow
(Section 1.2). Therefore, the sum of all volume fluxes tells us how fast the vol-
ume of the fluid stored must change.

 

R

 

If a fluid is at rest in communicating containers, the levels will be the same,
not the volumes. Level differences—and with them pressure differences—can
be the cause of flows. In a closed hydraulic circuit, the sum of all pressure dif-
ferences must be zero (loop rule; see Section 1.3).

 

R

 

Normally, there is friction in fluid flow (as a consequence of viscosity). There-
fore, the pressure of the fluid must decrease in the direction of flow. We need
a pressure difference to force a fluid through a pipe, and this pressure differ-
ence is related to the flow by a resistance law (Section 1.4): the flow equals the
pressure difference divided by the hydraulic resistance.

 

R

 

In fluid containers, the pressure of the fluid is related to the amount of fluid
stored by a capacitance law (Section 1.5): the rate of change of pressure mul-
tiplied by the capacitance tells us how fast the volume stored must change.

 

R

 

Combining laws of balance with laws for flows and containers, and with the
loop rule, leads to complete models of dynamic hydraulic processes.
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Questions

 

1. Which phenomena are related by a law of balance? What is
the law of balance of amounts of water?

2. Are you sure that flows of water are the only processes which
can change the amount of water in a system? If they are not,
what law would have to be changed, and how?

3. Consider Fig.1.8. Why is there a minimum of the volume of
water stored in the system at about 1.1·10

 

5

 

 s? What can you
say about the fluxes of water before this point in time? After
this point in time?

4. Why does the strength of the gravitational field play a role in
the pressure of a fluid column? Why does the pressure in-
crease linearly with depth if the fluid is a liquid such as water?

5. Consider two communicating lakes with a single channel
connecting them, and without further inflows or outflows. Is
the system at rest when there are equal amounts of water in
the lakes?

6. What is the relation between viscosity, friction, and produc-
tion of heat in fluid flow? What are the conditions of ideal
flow?

7. In Example 1.4 we calculated the pressure difference to be set
up by a pump for pumping a fluid at steady state. Does your
answer depend on whether the fluid entering the pump al-
ready flows or is pumped from rest?

8. In Fig.1.26, a straight line connecting the exit point of the
pipe and the top level of the glass tubes showing the pressure
of the fluid goes to the top of the fluid layer in the tank (upper
figure in Fig.1.39). Which model assumptions make this to be
the case? Actually, it is found that the line goes to a point well
below the fluid surface (lower figure). What is the reason for
this behavior? What did we neglect?

9. We have associated the notion of resistance and capacitance
with flow through pipes, and with containers storing fluids,
respectively. Couldn’t a capacitor also be a resistor, and vice-
versa?

10. What does the characteristic curve of a pump look like which
sets up a constant pressure difference independent of the flux
of fluid? 

11. Use the abstract “hydraulic” image of a straight walled tank
containing a fluid to explain the relation between content, lev-

FIGURE 1.39.
Question 8.

el, and capacitance. Which geometrical quantity corresponds
to which physical one?

12. Explain the meaning of the terms “voluntary” and “involun-
tary” hydraulic processes. In what sense is the phenomenon
of resistive flow of a viscous fluid through a pipe a voluntary
hydraulic process? How is this expressed in a system dia-
gram?

13. What is the system diagram of a fluid discharging from a tank
such as in Fig.1.24?

14. In Fig.1.38, the equation of balance (the first in the list of
equations) does not have to be written explicitly in software
tools. Why is this the case?

15. What is the behavior over time of the currents through the two
pipes in the system of Example 1.8? Use qualitative reason-
ing.

Exercises

1. A pump forces water through a long pipe, and then through a
turbine. Draw the combination of system diagrams represent-
ing this system.

2. Calculate the pressure of the water at the bottom of a lake 100
m deep.

3. A person’s blood pressure is said to correspond to 130 mm of
a column of mercury. Determine the pressure.

4. Castor oil is pumped through a pipe 10 m long, having a di-
ameter of 5.0 cm. Determine the hydraulic resistance.

5. Water is pumped through a smooth pipe having, respectively,
a length of 10 m and a diameter of 4.0 cm. The flux is 10 li-
ters/s. The water then flows through a turbine, and back to the
pump through another pipe having the same dimensions as
the first. The pump sets up a pressure difference of 5.0 bar.
What is the pressure difference across the turbine?

6. Determine the hydraulic capacitance of a swimming pool 25
m long and 15 m wide.

7. Two communicating straight-walled containers having diam-
eters of 0.40 m and 0.60 m, are filled with olive oil to levels
of 1.0 m and 0.30 m, respectively. What is the common final
height of the oil in the tanks?

8. In the process modeled in Fig.1.38, the volume of fluid in the
tank as a function of time takes a form similar to the one
shown in the graph of Fig.1.40. Why is this so? How large is
the (negative) slope of the curve right at the beginning?

FIGURE 1.40.

 

Exercise 8.V

t
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Problems

 

1. Two currents of water are flowing into a fountain. The first
changes linearly from 2.0 liters/s to 1.0 liters/s within the first
10 s. The second has a constant magnitude of 0.50 liters/s. In
the time span from the beginning of the 4th second to the end
of the 6th second, the volume of the water in the fountain de-
creases by 0.030 m

 

3

 

. a) Calculate the volume flux of the cur-
rent leaving the fountain. b) How much water will be in the
fountain after 10 s, if the initial volume is equal to 200 liters?

2. Oil having a density of 800 kg/m

 

3

 

 and a viscosity of 0.60 Pa·s
is flowing through a system of pipes as in. The pressure at
point A is 1.40 bar, while at point C it is 1.20 bar. The thin
pipes have a diameter of 1.0 cm while the diameter of the
piece leading from A to B has a diameter of 2.0 cm. Neglect
the influence of corners in the pipes, and assume the law of
Hagen and Poiseuille to apply. a) What is the value of the vol-
ume flux through the lower pipes? b) How large is the total
volume flux through the pipes? c) What is the pressure at B?

3. Two tanks (see Fig.1.42) contain oil having a density of 800
kg/m

 

3

 

 and a viscosity of 0.20 Pa·s. Initially, in the container
at the left, which has a cross section of 0.010 m

 

2

 

, the fluid
stands at a level of 10 cm; in the second container (cross sec-
tion 0.0025 m

 

2

 

) the level is 60 cm. The hose connecting the
tanks has a length of 1.0 m and a diameter of 1.0 cm.
a) Calculate the pressure at A, B, C, and D at this point in
time. The pressure of the air is equal to 1.0 bar, and C is in the
middle of the hose. b) Sketch a pressure profile (pressure as a
function of position) for a path leading from A to D; include
a point C* at the other end of the pipe from point B. c) What
is the volume current right after the hose has been opened?

4. A large and shallow lake is going to be filled through a hori-
zontal pipe with a length of 10 km. Initially the lake is empty;
in the end it is supposed to contain 10

 

5

 

 m

 

3

 

 of water. Assume
the hydraulic resistance to be modeled by the law of Hagen
and Poiseuille; i.e., take the volume flux to be proportional to
the pressure difference across the pipe. The pressure drops by
10

 

2

 

 Pa per meter of length at a volume flux of 1.0 m

 

3

 

/s. While
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FIGURE 1.41.

 

Problem 2.

A

B

C

D
FIGURE 1.42.

 

Problem 3.

the lake is being filled, water evaporates from its surface at a
rate of 0.10 m3/s. a) If the volume flux is constant and equal
to 0.50 m3/s, what is the rate of change of the volume of water
in the lake? b) How long will it take to fill the lake? c) How
large is the pressure difference set up by the pump?

5. A large oil tank is filled through a pipe at its bottom (as in
Fig.1.43). The flow of oil through the pipe is supposed to be
laminar. Derive the instantaneous volume flux in terms of the
length and the radius of the pipe, the viscosity and density of
the oil, and the height of the oil in the tank.

6. Two tanks (see Fig.1.42) contain oil with a density of 800
kg/m3 and a viscosity of 0.20 Pa·s. Initially, in the container,
which has a cross section of 0.010 m2, the fluid stands at a lev-
el of 10 cm; in the second container (cross section 0.0025 m2)
the level is 60 cm. The hose connecting the tanks has a length
of 1.0 m and a diameter of 1.0 cm. Sketch the levels in the
containers as a function of time. 

7. Calculate the hydraulic capacitance of a U-shaped glass tube
used in a mercury pressure gauge. The inner diameter of the
tube is 8.0 mm.

8. Calculate the hydraulic capacitance of a conically shaped flu-
id container as a function of fluid pressure at the bottom (see
Fig.1.31).

9. Two containers are joined by a pipe as in. The second contain-
er has both an inlet and an outlet. Assume the flow through the
pipes to obey the law of Hagen and Poiseuille. a) Write the
equations of balance of volume for the fluid in the containers.
b) Derive the relation between volume of fluid and pressure of
fluid at the bottom of each of the containers. c) Write the laws
for the volume fluxes through both pipes. d) Derive the differ-
ential equations for the height of the fluid in each of the con-
tainers in terms of the hydraulic capacitance and resistance of
the elements of the system.

10. For the system of container, pipes, and pump shown in
Fig.1.27 derive a) the instantaneous pressure difference
across the pump, and b) the instantaneous volume flux
through the pump. The fluid is oil as in Problem 6. It stands at
a level of 1.0 m in the tank having a diameter of 1.0 m. The
pipes have a diameter of 5.0 cm, and lengths 2.0 m (B to C)
and 3.0 m (C to D*), respectively.

P

FIGURE 1.43.

 

Problem 5.

FIGURE 1.44.

 

Problem 9.
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