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Fluids, Electricity, Heat, and Motion

 

Mechanical processes can be explained just like electrical or thermal ones: they are the
result of the storage and the transfer of a couple of fundamental quantities. We will find
here that translational phenomena are the result of the storage and transport of momen-
tum. Indeed, we say that a mechanical process is taking place if momentum (or angular
momentum) is transported from one body to another. The geometrical side of motion—
the fact that moving bodies change their location—does not really characterize a me-
chanical process (Chapter 14).

 

13.1 Collisions: Storage, Exchange, and Conservation 

 

of Momentum

 

Collisions nicely demonstrate the fundamental property of bodies in motion: they con-
tain a quantity of motion if they move, and they transfer this quantity if they interact
mechanically with other bodies. We notice this, for example, if a person runs into us,
if a snow ball hits us, if a ball is hit by a bat, or if we run into a wall. A body at rest does
not have this effect if we just touch it. Obviously, a moving body carries a quantity of
motion, more, if it is faster, and more, if it is bigger. In collisions, quantities of motion
are exchanged from body to body.

 

Examples of Collisions

 

Collisions are an important class of mechanical phenomena. They occur at every
scale—large and small, fast and slow. Here are some examples:

 

R

 

Steel balls on strings hitting others (Fig.13.1). 

 

R

 

Coins or billiard balls colliding on a table.

 

R

 

Train cars when hooking up.

 

R

 

Elementary particles in accelerators.

 

R

 

Planets, stars, and galaxies.

Take a closer look at the phenomenon shown in Fig.13.1. The moving body has a cer-
tain quantity of motion just before the collision. The interaction leads to this quantity
being transferred to the second steel ball. The first body must have lost all of its motion,
since it comes to rest after the collision. Collisions can be anything between totally

 

elastic

 

 and totally 

 

inelastic

 

. The latter occurs when two bodies colliding join or merge
to form a single body.

 

FIGURE 13.1.

 

Identical steel balls 
colliding. If the first ball is released 
at a certain height and then collides 
head on with a second one hanging 
without moving, the latter moves off 
at the final speed of the first, while 
the first comes to rest. This is an ex-
ample of a completely elastic colli-
sion.

��������
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Large cover picture: Composite Hubble Space Telescope image of Jupiter and Comet Shoemaker-
Levi. Small inset: Infrared image of fireball of Fragment G on July 18, 1994, Keck Observatory.
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Extensive and Intensive Quantities in Translational Motion

 

Here is an image which tells us more about the nature of the quantity of motion of a
moving body. Divide a moving body into two parts. Obviously, both parts move at the
same speed: the speed is not divided among the parts (Fig.13.2). However, we imagine
a body possessing a quantity of motion which is divided into two parts whose sum is
equal to the quantity of motion of the entire body. The quantity of motion is commonly
called 

 

momentum

 

.

Each of the basic classes of phenomena treated in previous chapters demonstrated the
existence of an extensive and an associated intensive quantity (Table 13.1). This is no
different for translational motion. Indeed, momentum and velocity play the same roles
for mechanics as do charge and electric potential for electric phenomena.

 

Conservation of Momentum

 

Mechanical phenomena here on Earth gives us the impression that motion dies by itself
and that it has to be initiated again and again. By itself, a rolling ball comes to rest, and
we have to push it if we want it to move again. In fact, if we ask if momentum can be
created and destroyed, we have to explain a number of everyday phenomena:

 

R

 

I am starting to walk; my momentum increases. A car accelerates on a street;
its momentum increases (Fig.13.3a). Is momentum created?

 

R

 

A sliding body comes to rest. Is momentum destroyed?

 

R

 

Two identical bodies moving toward each other with equal speed. They collide
and stick together. They come to rest. Is their momentum destroyed?

 

R

 

Two gliders at rest on an air track have a compressed spring between them. The
spring is released, and the bodies move apart (Fig.13.3b). Is momentum creat-
ed in this process?

Actually, the conclusion in all cases is that momentum cannot be created or destroyed.
In the first two example, momentum comes from the Earth or flows into the Earth. As
a result, our planet experiences motion which is so slow that we cannot perceive it. The
third and fourth example clearly demonstrate that we should think of momentum as a
quantity which may be either positive or negative. In collisions, momentum is not lost.
The spring pushing the gliders apart serves as an agent to separate momentum into pos-
itive and negative quantities.

 

TABLE 13.1.

 

A list of extensive and intensive quantities

 

Phenomenon Extensive quantity Intensive quantity

 

Hydraulics Volume Pressure

Electricity Charge Electric potential

Gravity Gravitational mass Gravitational potential

Motion (Rotation) Angular momentum Angular speed

Chemistry Amount of substance Chemical potential

Heat Entropy Temperature

Motion (Translation) Momentum Velocity

 

FIGURE 13.2.

 

If a moving body is 
divided into two parts, each part 
moves at the same speed. However, 
each section only contains a part of 
the momentum of the entire body.

Momentum p

Velocity v

Velocity v1 = v
p1

p2

p

Momentum p = p1 + p2

Velocity v2 = v

 

FIGURE 13.3.

 

An accelerating car 
gets its momentum from the earth. 
Two cars being pushed apart by a 
spring separate momentum into pos-
itive and negative quantities. Mo-
mentum flows from the left to the 
right car.

�����
Momentum is flowing from

the Earth to the car

�����
Momentum is flowing from

the left car to the right car

Positive direction

a.

b.
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Falling and Pumping of Momentum

 

In the examples of motion treated here, momentum flows either “uphill” or “downhill.”
In other words, it flows either from a body having low velocity to one having a higher
velocity, or vice-versa.

If momentum is flowing “downhill,” we speak of a 

 

voluntary

 

 mechanical process; if it
is pumped “uphill,” the process is called 

 

involuntary

 

.

1. A train car is moving toward another one which is at rest. After the col-
lision, the cars are coupled to each other. For a little while after the col-
lision, friction is negligible. From where to where does momentum flow?
Does it flow “uphill” or “downhill?” What is the change of the momen-
tum of the first car compared to that of the second one?

2. A billiard ball is hitting a second one at rest head on. Is momentum flow-
ing “downhill” or “uphill” in this process?

1. Momentum flows from the first car to the second. Since the velocity of
the first car is always larger than or equal to that of the second, momen-
tum is flowing “downhill.” The changes of momentum of cars 1 and 2
must be equal in magnitude, but of opposite sign. The change of momen-
tum of car 1 is negative.

2. In this collision, there are two phases. First, the moving ball is slowing
down until its speed is equal to that of the second. In the second phase,
the speed of the first ball is still decreasing while that of the second one increases further.
Therefore, during phase 1, the hitting ball is faster, in phase 2 it moves more slowly than the
ball which was hit. Therefore, momentum first flows downhill before it is pumped uphill.

13.2 Modes of Momentum Transfer

In collisions, bodies loose or gain momentum. In general, in mechanical processes in-
volving translational motion. momentum is transferred. The transfer mechanisms can
take three different forms.

Momentum Transfer as the Result of Bodies Touching

In collisions, when we start moving or come to rest on the ground, or if bodies are
pulled or pushed—with ropes, hands, sticks, springs, and so forth—the bodies in-
volved in the processes directly touch. Therefore, momentum must be transferred
across the surfaces of the bodies involved, and through the bodies themselves. In this
case we speak of conductive transfer of momentum. Again, the example of steel balls
swinging from strings and colliding demonstrate, that bodies are capable of conducting
momentum (Fig.13.4).

Conductive transfer of momentum is directly noticeable: it leads to mechanical stress
in the bodies through which momentum flows. This is what we feel in mechanical in-
teractions.

 

Q

 

A��1

��2

��3

 

FIGURE 13.4.

 

The left-most steel 
ball swings toward three balls which 
are at rest. If the balls are identical, 
and if the collision is head on, the 
moving sphere will come to rest, and 
only the right-most ball will move 
away at the speed at which the left 
sphere had just before the impact. 
During the collision, momentum 
must flow through the two balls 
which remain at rest.



 

13.2  Modes of Momentum Transfer

 

Part III: An Introduction to Motion

 

5

 

Momentum currents and stress.

 

 In mechanical processes, momentum flows. To
quantify the phenomenon, we introduce the notion of a 

 

momentum current

 

 or 

 

momen-
tum flux

 

, which we abbreviate by 

 

I

 

p

 

. It tells us how much momentum is flowing across
a system boundary in unit time. 

The SI-unit of the momentum current is called Newton (N). As a consequence, the unit
of momentum must be N·s (Newton-second).

Consider a block of wood being pushed by a stick on a horizontal surface (Fig.13.5).
The block accelerates, it obtains momentum which must flow through the stick to the
block. The stick and the block are both under compressional mechanical stress. How
strongly the material is stressed is measured by how dense the current is if measured
at a surface. The thinner the stick for the same loading, the higher the stress. If the stick
is thinner, the same momentum current must flow through a smaller cross section. Me-
chanical stress is quantified by introducing the 

 

momentum current density

 

 

 

j

 

p

 

:

 

(13.1)

 

The SI-unit of the momentum current density is [

 

j

 

p

 

] = N/m

 

2

 

. In other words, the current
density measures how the current is distributed over the surface through which it flows.
This distribution is a fundamental mechanical quantity which tells us about the state of
stress of a material.

Now consider the case of the wooden block again. Assume that we push it in such a
way that it slides across the rough surface at constant speed. As far as the stick is con-
cerned, its situation is the same; it is under compression, and it communicates momen-
tum to the block. However, the blocks speed is not supposed to change which means
that its momentum cannot change. Therefore, momentum must flow out of the body at
just the same rate at which it receives it. Naturally, this is the result of friction at the
bottom of the block. Note that the momentum supplied flows sideways out of the body,
leading to what is called shearing stress (Fig.13.6).

 

Pressure as normal stress.

 

 We have known a special case of mechanical stress for
quite a while already—namely the 

 

pressure of fluids

 

. If we select a portion of a fluid as
a body, we see that this body presses upon the surrounding material. This material may
be more fluid, or a part of a container wall. Either way, the situation is just as in
Fig.13.5 where the stick pushes the block; we could have used a fluid under pressure
to have the same effect upon the block.

There is one notable difference, however. Whereas a solid stick can be used to also set
up tangential stress on the surface of another body, a fluid cannot do so, unless it is vis-
cous. Even a viscous fluid cannot transmit momentum obliquely to a surface if it is at
rest. Either way, the normal component of the momentum flux across a fluid surface is
called the pressure of the fluid. The unit of pressure is the same as that of a momentum
current density. Therefore, Pa = N/m

 

2

 

.

���

Momentum

current Ip

+ x

Surface A

 

FIGURE 13.5.

 

When bodies interact 
mechanically by touching, momen-
tum flows through the bodies and 
across surfaces. The surface density 
of the momentum current is the mea-
sure of mechanical stress.

I A jp p=

 

B

 

Note that in a material under compressional stress, momentum flows in the
positive spatial direction (Fig.13.5). If the material is under tension, mo-
mentum flows though it in the negative direction.

 

FIGURE 13.6.

 

Shearing stress is the 
result of the sideways flow of mo-
mentum.

���

Momentum

current Ip

+ x

Surface A

 

B

 

If momentum flows sideways through a body, this leads to shearing stress.
Alternatively, this is called tangential stress.



 

Chapter 13:  Storage, Transfer, and Balance of Momentum

 

6

 

Fluids, Electricity, Heat, and Motion

 

Bodies Falling at the Surface of the Earth

 

Bodies can be set in motion without direct touch by another object. As an example take
a stone falling at the surface of the Earth. Since the body is speeding up, its momentum
must be increasing. We say that it receives momentum from the Earth (which therefore
moves in the opposite direction toward the stone) 

 

through

 

 the Earth’s 

 

gravitational
field

 

 (Fig.13.7). 

This transfer has completely different properties than conductive transfer. Bodies do
not touch; momentum does not flow through bodies, it flows 

 

directly into (or out of)
each part

 

 of a body, without influencing other parts. This is a volumetric process, as
opposed to a surface process as in conduction. It has very much in common with 

 

radi-
ative transfer

 

 of entropy into and out of bodies (Chapter 10).

As in the case of radiation of heat, we introduce source rates to quantify the transfer of
momentum. A 

 

momentum source rate

 

 

 

Σ

 

p

 

 tells us, how much momentum a body re-
ceives overall per unit time. It has the same units as that of a momentum flux, namely
Newton.

Note that the transfer of momentum directly into and out of bodies does not lead to me-
chanical stress by itself. There must be a reason for momentum to flow through the ma-
terial of a body for stress to occur (Fig.13.8). 

What we describe here is the result of the interaction of bodies and fields. There are
other examples of such processes. Electrically charged bodies react to electric fields,
and moving charged bodies or magnetized materials receive momentum through the
magnetic field (Chapter 16, and Part V). Just as a body has to be electrically charged
to react to an electric field, it has to be “gravitationally charged” to be influenced by a
gravitational field. The gravitational charge is the gravitational mass, and the interac-
tion of a stone and the Earth’s gravitational field leads to the weight of the body.

 

Momentum Transfer with Fluids: Convective Momentum Currents

 

Momentum can be transferred into and out of systems with flowing fluids. The flow-
ing—and therefore moving—fluid contains momentum. If it flows into or out of a sys-
tem, it brings or takes some momentum, leading to a momentum current with respect
to the system.

Conductive and radiative transfer of momentum keep the material integrity of a body;
they do not change the mass of a body. Transfer with fluids—which is called convec-
tion—does not. Here, we only study the motion of bodies, not of open systems which
accept the flow of fluids. Convective transfer is treated in Part IV of the book.

1. A body is pushed by a beam through which a momentum current of 120
N flows for 10 s. How much momentum is transferred to the body
through the beam? If at the same time an amount of momentum equal to
700 N·s flows out of the body, by how much should its momentum have
changed?

2. The beam in Question 1 has a cross section of 0.0050 m2. How large is
the mechanical stress in the beam? In which direction of space is mo-
mentum flowing?

3. If in Fig.13.7 the positive direction of space is chosen to point upwards, where does momen-
tum come from or go to?

4. Change the positive direction of space in Fig.13.8 to the upward direction. Does the conduc-
tive momentum flow through the cylinder change direction? Does this change the stress?

���
���

Momentum

sources Σp

+ y

 

FIGURE 13.7.

 

Momentum flows di-
rectly into every part of a body 
through the Earth’s gravitational 
field. Instead of currents, we have 
source rates of momentum. The 
dashed lines are supposed to repre-
sent momentum flow through the 
gravitational field. They are not 
drawn realistically.

Momentum

currents Ip

+ y

 

FIGURE 13.8.

 

In a body at rest at the 
Earth’s surface, the momentum sup-
plied through the gravitational field 
(sources in the body) flows out again 
through the bottom. The currents 
flow through the material (conduc-
tion), and the body is under compres-
sional stress.

 

Q
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1. With a current of 120 N flowing constantly over 10 s, an amount of mo-
mentum equal to 120 N · 10 s = 1200 N·s will have been communicated
to the body. Since momentum is conserved, the change of the momentum
of the system must be 

 

∆

 

p

 

 = 1200 N·s – 700 N·s = 500 N·s.

2. If the momentum current is uniform over the cross section of the beam,
the momentum current density (which is the stress) is 

 

j

 

p

 

 = 

 

I

 

p

 

/A

 

 = 120 N
/ 0.0050 m

 

2

 

 = 24·10

 

3

 

 N/m

 

2

 

. The beam is compressed, therefore momen-
tum is flowing in the positive direction of space.

3. Now, the body is falling in the negative direction. Its velocity is becoming more negative in
the course of time. Therefore, momentum must leave the body. There will be sinks of mo-
mentum rather than sources with respect to the body, and momentum will flow through the
gravitational field to the Earth.

4. Since we no have sinks of momentum with respect to the body, momentum must be supplied
to it through its bottom cross section resting on the floor. Momentum is transported conduc-
tively through the cylinder in the upward (positive) direction. Naturally, the stress is still com-
pressional.

13.3 Momentum, Velocity, and Momentum Capacitance

The momentum of bodies depends upon two factors. First, for a given body, the higher
the velocity, the higher the momentum. Second, different bodies moving together at the
same speed usually contain different amounts of momentum. There is a quantity which
measures the “size” of a body such that the bigger the “size” the more momentum it
contains at a given velocity. Note that the “size” cannot be the volume of a body.

Dependence of Momentum Upon the Velocity

Simple measurements of completely inelastic collisions of identical gliders on an air
track demonstrate that the momentum of a body must be proportional to its velocity
(Fig.13.9):

(13.2)

Actually, this relation only holds for velocities which are small compared to the speed
of light (Section 13.7). Note that since the velocity can either be positive or negative,
we expect the same to be true for momentum as well.

The Momentum Capacitance

Obviously, the factor of proportionality relating momentum and velocity in Eq.(13.2)
measures how much momentum a body contains per unit velocity; such a factor has all
the properties of a capacitance (Table 13.2):

(13.3)

The momentum capacitance measures how much momentum has to be added to a body
so it will have a certain velocity. Since it is harder to set a body with a large momentum
capacitance into motion, this factor is also said to measure the inertia of the body. For

 

A

v

p1 p2 = 0

v / 2

p1* = p1/2 p2* = p1/2

 

FIGURE 13.9.

 

Two identical gliders 
collide on an air-track. The first was 
moving, the second was at rest. After 
the inelastic collision, the momen-
tum is split among the bodies. Mea-
surements show that the speed of the 
combined system is half that of the 
first glider before the collision.

p ~ v

momentum capacitance
p=
v
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this reason, the momentum capacitance is commonly called the 

 

inertial mass m

 

i

 

 of the
body. In other words, 

 

m

 

i

 

 = 

 

p/

 

v

 

, or

 

(13.4)

 

The inertial mass is given the same unit as the gravitational mass, i.e., [

 

m

 

i

 

] = kg. The
reason for this will be discussed further below. Momentum capacitances of bodies can
be inferred from the measurement of the outcome of collisions, or, as we shall see
shortly, from the measurement of their gravitational masses.

 

The Fluid Image of Momentum

 

The relation between momentum, velocity, and inertial mass of a body can be cast in
the form of a graphical image already used in previous chapters (Fig.13.10). A body is
represented by a (straight walled) container whose cross section is taken to be the mo-
mentum capacitance, i.e., the inertial mass. The fluid contained in the imaginary tank
represents the momentum stored, and the level of the fluid denotes the velocity of the
body.

This image is analogous to what we already used for rotational processes (Chapter 5),
and very similar to the hydraulic image of other quantities. The drawing in Fig.13.10
shows the velocity of the body with respect to a value of zero. For the purpose of dis-
cussing motion here at the surface of our planet, we can associate this special level with
the velocity of the Earth. The Earth itself is like a giant reservoir of momentum which
supplies or receives quantities of motion without being affected by the processes of or-
dinary bodies. The velocity of a body, and therefore its momentum, can be positive or
negative with respect to the level of this reservoir.

 

Fluid Image and Momentum Balance in Collisions

 

The fluid image can be used to visualize collisions between two bodies in a single di-
rection of space (Fig.13.11). The momentum of both bodies is measured with respect
to the same observer (which may be taken to be at rest relative to the Earth). It is com-
monly assumed that—at least right during the collision—the system of two bodies is
isolated from the rest of the world, leaving its total momentum untouched. With 

 

p

 

1

 

 +

 

p

 

2

 

 = constant, we have

 

(13.5)

 

This is represented graphically in the fluid or hydraulic image of the collision, and can
even be used to solve the problem graphically.

 

TABLE 13.2.

 

Capacitances of physical systems

 

Field Capacitance

 

Hydraulics

 

K

 

V

 

 = 

 

dV/dP

 

Electricity

 

C

 

 = 

 

q/U

 

Rotation

 

J

 

 = 

 

L /

 

ω

 

Heat

 

K

 

 = 

 

dS/dT

 

Motion (Translation)

 

m

 

i

 

 = 

 

p/

 

v

p mi= v

v

v = 0

p

mi

 

FIGURE 13.10.

 

Fluid image of mo-
mentum. The momentum of a body 
is like the amount of fluid in a con-
tainer. The level of the fluid and the 
cross section of the container repre-
sent the velocity and the inertial mass 
of the body, respectively.

∆ ∆p p1 2= −
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Inertial and Gravitational Mass

 

Bodies with larger inertia also are heavier. Indeed, this is a strict proportionality and
represents one of the most remarkable laws of nature:

 

(13.6)

 

It is commonly called the 

 

law of equivalence of gravitational and inertial mass

 

. It has
been verified to high precision in many different experiments, and the finding has been
used as the basis of the general theory of relativity. Even though the phenomena of
gravity and inertia are quite different superficially, their measures are given the same
values and the same unit, i.e. the kilogram. Naturally, as a consequence of this propor-
tionality, we can use scales to measure the inertial mass of bodies.

EXAMPLE 13.1. Measuring the inertial mass of bodies in collisions.

a) A glider having unit inertial mass and a velocity of 0.90 m/s collides with a stationary glider.
Both move on an air-track. The bodies stick together after the collision, and their velocity is mea-
sured to be 0.65 m/s. Determine the inertial mass of the second glider. b) Two astronauts float
in a spacecraft. One of them pushes the other whereupon they float apart, the first with a velocity
of 0.50 m/s, the second with a speed of 0.60 m/s in the opposite direction. The first is known to
have a mass of 80 kg. How large is the mass of the second astronaut?

SOLUTION: a) We can use Fig.13.11, where v2 = 0, to solve the problem. The cross section of
the second container is unknown, however, we know the final common velocity of the combined
system. Using Eq.(13.5), we can write

or 

b) The process is the reverse of a completely inelastic collision (the astronauts are moving to-
gether at first, and as separate bodies after the event). Here, before the process, both bodies are
at rest with respect to the observer, meaning that the containers in Fig.13.11 are empty. The
event leads to one container being filled at the cost of the other. In other words, momentum is
pumped from one to the other container. Again we use Eq.(13.5):

which leads to m2 = – v1*/v2*m1 = – 0.50/(–0.60)·80 kg = 66.7 kg.

 

B

v1

v = 0

m1

v2

m2

∆p1

∆p2

v *

 

FIGURE 13.11.

 

Completely inelastic 
collision between two bodies in the 
fluid image. The second body initial-
ly moves in the negative direction. 
The dashed horizontal line at 

 

v = v*

 

 
denotes the common final velocity of 
the combined body.

m mi g~

m m1 1 2 0v v v* *−( ) = − −( )

m m2
1

1
0 65 0 90

0 65
1 0 0 385= − − = − − =v v

v

*

*

. .

.
. .kg kg

m m1 1 2 20 0v v* *−( ) = − −( )
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13.4 Momentum and Energy in Collisions

 

The fluid image of momentum can be used to explain part of the role of energy in the
motion of bodies. This is particularly useful for calculating the outcome of collisions,
since the law of balance of momentum alone does not always suffice to obtain results.

 

Energy of a Moving Body

 

As with all other phenomena, energy accompanies also the processes of translational
motion. In particular, a moving body stores some energy, just as a hot or charged body
does. Again, the hydraulic image lets us visualize the energy associated with motion.
Since we view the “content” of a container as the momentum of the body, and since
this content has to be filled into the container—a process for which we need energy—
the energy is equal to the product of the level of the center of the content (which is v/2)
and the content (Fig.13.12):

 

(13.7)

 

The energy stored by a body as a result of its motion is often called 

 

kinetic energy

 

. Note
that the name does not mean that this is a special type of energy. Rather, it tells us
something about the system storing the energy.

 

Releasing and Binding Energy in Collisions

 

In collisions, momentum flows from bodies of high velocity to those of lower velocity,
or vice-versa. Therefore, energy must be released or bound in these processes.

The fluid image shows also how much energy has been released or bound from the start
to a given moment during the collision. The amount of energy released corresponds to
the product of the amount of momentum transferred up to that point (

 

p

 

e

 

) and the aver-
age “fall” of level (

 

∆

 

v

 

) of the transferred momentum (Fig.13.13):

 

(13.8)

 

Energy released can also be bound. In an elastic collision, for example, momentum is
pumped to higher levels after the bodies have reached a common velocity during the
first phase of the collision. If all the energy released (up to the point where the speeds
of the bodies are equal) is bound for further motion, the collision is said to be com-
pletely elastic. Naturally, energy which is not bound in such a process is dissipated, i.e.,
entropy is produced. In a completely inelastic collision—which results in a single
body—all the energy released is dissipated.

v

v = 0

mi

v / 2

p

 

FIGURE 13.12.

 

The energy of a 
body associated with its motion is 
like the energy stored with a fluid in 
a tank.

W p mi= =1

2

1

2
2v v

W preleased e= −∆v

∆v

v = 0

m1 m2

∆p1

∆p2

pe

 

FIGURE 13.13.

 

Energy released in 
the “fall” of momentum is shown in 
the fluid image of a collision. The 
figure shows the first short time span 
during a collision.
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Collisions in a Single Direction of Space

 

Combining the laws of balance of momentum and energy lets us calculate the outcome
of general processes of the collision of two bodies in a single spatial dimension. Con-
sider a completely elastic collision. Momentum falls—and energy is released—until
the common speed of a complete inelastic collision is reached. (See the inelastic line
in Fig.13.14). Since the collision is not dissipative, the energy released is bound in

pumping the same amount of momentum “uphill” during the second stage of the col-
lision. The final state is equal to the initial one mirrored at the inelastic line.

 

Dynamic Model of Momentum and Energy Balances

 

In previous chapters, we have used the system dynamics representation of processes to
learn more about them. If we write the law of balance of momentum in terms of com-
binations of stocks and flows of momentum, and then manage to express the momen-
tum flows, we can compute the processes of motion. In this chapter, however, we will
only be able to solve part of the problem, since we still lack knowledge of concrete re-
lations for momentum currents in collisions.

As an example of how to introduce system dynamics modeling to deal with collisions,
again consider the completely inelastic interaction between two bodies moving in a
straight line (Fig.13.15). You will see that—by simply assuming a form of the momen-
tum flux during the collision—we will be able to determine the final velocity and the
amount of energy released.

Since there are two bodies, we write the law of balance of momentum twice. There is
only one current, however, from the first to the second body, just as in communicating

 

FIGURE 13.14.

 

Fluid image of the 
completely elastic collision between 
two bodies. The second one initially 
moved in the negative direction. The 
energy released during the first phase 
of the collision (up to the inelastic 
line) is used to pump again as much 
momentum from the first to the sec-
ond body.

v1

v = 0

m1

v2

m2

v2 *
Inelastic line

v1 *

v *

 

FIGURE 13.15.

 

System dynamics 
model of a completely inelastic colli-
sion of two bodies moving in a 
straight line. Momentum balances 
are expressed by stocks and flows, 
velocities are calculated like water 
levels, and the energy released by the 
fall of momentum is obtained by in-
tegrating the rate at which it is re-
leased.

Momentum 1 Ip1

Velocity 1Mass 1 Velocity 2

Ip2

Momentum 2

Mass 2

I I

Rate of release
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water tanks. We introduce two momentum fluxes, one for each body, where the fluxes
are equal in magnitude but have the opposite signs. The velocities are calculated just
like water levels in hydraulic models (Chapter 1).

Lacking a proper law for the momentum current, we give it a constant average value
such that the momentum is exchanged in a short period equaling the duration of the
collision. We simply set the current equal to zero as soon as the velocities have become
equal. This ensures that the velocities of the bodies stop changing when the collision
is over. Naturally, by doing this we still do not have a realistic model of how the colli-
sion proceeds in time.

While momentum flows from the first to the second body, energy is released at a rate
which is the in instantaneous form of Eq.(13.8), i.e.,

 

(13.9)

 

Imagine the energy released to be stored in an intermediate “storage device” to be used
later in a follow up process. Therefore, the release of energy—and its later use—can
be represented by a kind of balance of energy (Fig.13.15).

EXAMPLE 13.2. A partly inelastic collision.

A small truck bumps into a car from behind. The truck and the car were moving at 60 m.p.h. and
40 m.p.h. before the collision, and their masses are 1500 kg and 800 kg, respectively. If half of
the energy released is dissipated, what should the final velocities of the vehicles be after the col-
lision?

SOLUTION: First, we calculate the inelastic line (the velocity attained in a completely inelastic
collision). From Eq.(13.5) we find:

or

Now we can determine the amount of energy released. The momentum which is exchanged up
to this point is 

The average velocities of the vehicles during this first phase of the collision are 0.5(26.7+23.6)
m/s = 25.15 m/s, and 0.5(17.8+23.6) m/s = 20.70 m/s, respectively. With ∆v = 20.70 m/s – 25.15
m/s = – 4.45 m/s, the amount of energy released is

Half of this is used to pump an additional amount of momentum from the truck to the car. This
leads to two relations

whose solution is v 1* = 21.4 m/s and v 2* = 27.7 m/s. The relations can be represented graphi-
cally in Fig.13.14. If the collision had been completely elastic, the car would have had a final
velocity of 29.4 m/s, whereas the truck would decelerate to a speed of 20.5 m/s.
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13.5 The Momentum of Extended Bodies:  The Center of 

 

Mass

 

The momentum of a body can be expressed in terms of its velocity and its mass. With
extended bodies there is a problem defining its velocity. In general, each point of a
body has a different velocity. Consider a sphere rolling on a flat surface (Fig.13.16), or
a spring being stretched, and the problem becomes obvious. Therefore, we must find a
point which represents the translational motion of an extended body.

 

Velocity of the Center of Mass

 

The problem is solved as follows. We will define the representative velocity of a body
such that the momentum calculated on its basis is equal to the sum of all the quantities
of motion of its parts. As the simplest possible example of a composite body, consider
a system consisting of just two very small bodies having masses 

 

m

 

1

 

 and 

 

m

 

2

 

, respective-
ly, moving in a straight line (Fig.13.17). The total momentum of the system is

 

(13.10)

 

On the other hand, if we look at the system as a single body of mass 

 

m

 

1

 

 + 

 

m

 

2

 

 moving
at a certain velocity 

 

v

 

CM

 

, its momentum would be

 

(13.11)

 

The velocity representing the translational motion of the system is called the velocity
of its center of mass. From Eqs.(13.10) and (13.11) we have

 

(13.12)

 

This definition of the velocity of the center of mass can be extended to any number of
particles in one or more spatial dimensions, as well as to spatially continuous distribu-
tions of mass.

Consider again the two mass points used above (Fig.13.17). We can define a special
point of the system by

 

(13.13)

 

which is called the 

 

center of mass

 

 of the system. Obviously, the center of mass moves
at the speed 

 

v

 

CM

 

. To see this, we only have to calculate the velocity associated with the
center of mass from Eq.(13.13).

 

Properties of the Center of Mass

 

The center of mass of an extended system has some important properties which will be
listed here. Actually, all the claims made can be proved.

 

R

 

The motion of a body—and therefore its momentum—is always measured
with respect to an observer. If we take an observer moving with the same ve-
locity as that of the center of mass given in Eq.(13.12), the observer measures
a momentum of zero for the system (Fig.13.18).

 

FIGURE 13.16.

 

Different points of a 
rolling sphere have different veloci-
ties. Still, there is a special point of 
the body which we can take to repre-
sent the translational motion.
���
���

p m m= +1 1 2 2v v

p m m CM= +( )1 2 v
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x1
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FIGURE 13.17.

 

A system consisting 
of two particles. The total momen-
tum defines the velocity of the center 
of mass, and the particles positions 
and masses define the position of the 
center of mass.

v
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R

 

If a system is mechanically isolated from the environment, i.e., if there are no
momentum transports from the system to the environment or vice-versa, its
momentum cannot change. Therefore, the velocity of the center of mass must
remain constant.

 

R

 

The center of mass of a system does not have to coincide with a material part
of the system.

 

R

 

The velocity of the center of mass of a system composed of particles corre-
sponds to the velocity the system would attain after all of its parts merged into
a single body as a result of multiple completely inelastic collisions.

 

Observers and the Momentum of Bodies

 

Motion is always determined with respect to a chosen observer. Velocities are mea-
sured with respect to such an observer. Therefore, the momentum of a body also de-
pends upon the observer which has been chosen for a particular case.

We said that the velocity of the center of mass of an isolated system must remain con-
stant. This is not true for an observer moving at increasing or decreasing speed. There-
fore, unless otherwise noted, we will only choose observers for whom the claim is true.
These are called 

 

inertial observers 

 

or

 

 inertial frames of reference

 

.

 

 

 

Looking at motion
from non-inertial frames requires an extension of the rules for finding momentum cur-
rents which will be discussed briefly in Chapter 16.

1. Why is the motion of the center of mass representative of the motion of
an extended system?

2. Why does the velocity of the center of mass of a mechanically isolated
system remain constant? What kind of motion is therefore possible for
the center of mass of such a body?

1. The velocity of this point multiplied by the total mass of the system is
equal to the total momentum of the body.

2. Mechanical isolation means that there are not momentum transports with
into or out of the body. Since momentum cannot be created or destroyed,
the quantity of motion of the system must remain constant. The motion
of such a system is either in a straight line with constant speed, or the
body is at rest with respect to the observer.

EXAMPLE 13.3. Center of mass of the Earth-Moon system.

Where is the center of mass of the system composed of Earth and Moon? The mean distance be-
tween Earth and Moon is 384,000 km, the masses of the two bodies are 6.0·1024 kg and 7.4·1022

kg, respectively. Assume an observer for whom this center of mass moves at a speed of 30 km/s.
What is the momentum of the system?

SOLUTION: The center of mass of the system is found on the straight line connecting the centers
of Earth and Moon (Fig.13.17). Introduce a coordinate system (x-coordinate) along this line hav-
ing its origin at the center of the Earth. Therefore, we have x1 = 0 m and x2 = 3.84·108 m. Using
Eq.(13.13), we find that

 

FIGURE 13.18.

 

An observer moving 
with the center of mass measures a 
momentum of zero for the system.

m1 m2

v1 v2

CM

vMMP

Observer
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Since the radius of the Earth is approximately 6400 km, the center of mass of the Earth-Moon
system lies inside the Earth.

 

B

 

13.6 Collisions in Two and Three Dimensions

 

Collisions in two—or three—dimensions demonstrate a centrally important feature of
momentum: there are two—or three—

 

independent components of momentum

 

, i.e.,
components for which the rules found so far hold independently. Alternatively, we may
say that momentum is a 

 

vector

 

 quantity.

 

Component and Vector Representations

 

Let us investigate the collision shown in Fig.13.19. First, we determine the velocities
of the bodies before and after the collision in the 

 

x

 

- and 

 

y

 

-directions (Fig.13.20a). This
is done by measuring the distance travelled in either direction during a certain number
of successive time intervals (here there are six with a total interval of 0.12 s). These
components of distances are divided by the total time interval which yields the compo-
nents of the velocities. Finally, the velocity components are multiplied by the proper
masses of the bodies which leads to the components of momentum (Table 13.3).

x
m x m x
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FIGURE 13.19.

 

Elastic collision of 
two magnetized pucks on an air-ta-
ble. Puck A moves from the left and 
collides—without touching—with 
Puck B which was at rest initially. 
This is a drawing made according to 
a stroboscopic photograph of the col-
lision (single frames at a time inter-
val of 0.020 s).
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FIGURE 13.20.

 

Component and vec-
torial representations of a collision in 
two dimensions. Table 13.3 show 
that each component of momentum 
in the x-y coordinate system is con-
served individually. The triangle 
formed of the vectors of momentum 
demonstrates that the sum of the mo-
mentum vector(s) before the colli-
sion is equal to their sum after the 
event.
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The components of momentum are calculated from the components of velocity by
multiplying the latter by the proper mass, i.e.,

 

(13.14)

 

for the 

 

x

 

-components before the collision (Fig.13.21).

Having two or three independent components of velocity and momentum means that
these quantities are vectors. Fig.13.20b demonstrates that the vector of momentum is
a conserved quantity. We show this by determining the velocity vectors of the bodies
before and after the collision by drawing an arrow in the direction of motion whose
length represents the magnitude of the velocity—called the speed—of a body. The ve-
locity vectors are then multiplied by the value of the mass of the associated body which
yields the momentum vector:

 

(13.15)

 

This relation is demonstrated in Fig.13.21.

 

Momentum and Energy in Collisions

 

Inspection of the values in Table 13.3 proves that—within the bounds of errors made
by measuring the quantities—the sum of the 

 

x

 

-components of momentum of the bodies
before the collision is equal to their sum after the process; the same is true for the 

 

y

 

-
component:

 

(13.16)

TABLE 13.3.

 

Components of momentum in the collision of Fig.13.19

 

D

 

(position) 
m

Velocity 
m/s

Momentum 
N·s

 

A before x-direction 0.178 1.49 1.11

y-direction 0.095 0.79 0.59

B before x-direction 0.000 0.00 0.00

y-direction 0.000 0.00 0.00

A after x-direction 0.070 0.59 0.44

y-direction 0.129 1.07 0.80

B after x-direction 0.163 1.36 0.68

y-direction – 0.051 – 0.42 – 0.21

p m

p m
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xB B xB

=
=
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FIGURE 13.21.

 

Multiplication of ve-
locity components or vectors by the 
mass of the body. The velocity com-
ponents or vectors simply are 
stretched by the factor represented 
by the mass.
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B

 

In two (three) spatial dimensions, there exist two (three) independent com-
ponents of momentum. For each component, the properties known for a
single one—storage, transfer, and conservation—hold independently.
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Again, within measuring errors, we see that the momentum of the bodies is conserved
in the collision (Fig.13.20):

 

(13.17)

 

In analogy to the conclusion for the components reached above, we can say that mo-
mentum, as a vector, satisfies the rules known for a single component:

 

Energy in collisions

 

. Energy is not a vectorial quantity, it is a 

 

scalar

 

. Therefore, there
are no 

 

x

 

- or 

 

y

 

-components of energy, and the energy of a body has to be calculated from
its speed, i.e., from the absolute value

 

(13.18)

 

The energy of the moving body is

 

(13.19)

 

in analogy to Eq.(13.7). The values obtained from the observation of the collision
shown in Fig.13.19 and listed in Table 13.3 prove that the energy of the moving bodies
is conserved as well since the collision is completely elastic; there is no dissipation.

1. If in Fig.13.19 the perpendicular lines denoting a planar frame of refer-
ence are all rotated by the same angle, what happens to the components
of momentum (or velocity) and the momentum vectors of the bodies in-
volved in the collision?

2. If body B moved in the same direction after the collision as did body A
before (Fig.13.19), in which direction would body A have to move after
the event?

1. Rotating the frame of reference does not change the appearance of the
collision, i.e., the tracks of the bodies and the distances between succes-
sive points, at all; neither is the time interval changed. The way vectors
are determined shows that these are not changed by the rotation. The
components, however, change their values. Still, even though the indi-
vidual values are different, the components of momentum still satisfy the
rules observed in this chapter. The laws of nature do not change.

2. The vector sum of momentum before the collision must point in the same direction as that
after the process. Since the momentum of B already points in this direction, A may not have
a different direction. Body A must therefore move in the same line as it did before the colli-
sion, either forward or backward.

p p p pA B A B+ = +* *

 

B

 

In two (three) spatial dimensions, momentum behaves like a vector. Mo-
mentum is stored, i.e., the stored quantity is a vector, momentum flows, i.e.,
momentum fluxes are vectors, and momentum is conserved, i.e., the law of
balance of momentum is a vector equation.

v = +v vx y
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EXAMPLE 13.4. Inelastic collision in 2D.

Two cars collide at an icy intersection at right angles. The first car, having a mass of 700 kg,
moved at a speed of 50 km/h, while the second one, having a mass of 800 kg, moved at a speed
of 65 km/h. In the collision, the cars become entangled. Determine the direction and the speed
of the cars after the collision. How much energy has been dissipated?

SOLUTION: We use a vectorial representation of the collision (components would work just as
well). The momenta of the cars have absolute magnitudes of

The directions are shown in the accompanying graph. Since momentum is conserved in the col-
lision, we have

The magnitude and the direction of the resulting momentum vector are

and

respectively. The speed of the cars moving after the collision is determined by

The energy dissipated is equal to the difference of the energies of the bodies due to motion be-
fore and after the collision:

 

B

 

13.7 Motion at Very High Speed

 

We may wonder what happens when we give a body more and more momentum. Ac-
cording to what we know so far, its speed increases all the time. In the fluid image of
Fig.13.10 the fluid level simply continues to increase.

Motion at very high speeds demonstrates features which are not known at lower speed.
In particular, the speed of light cannot be surpassed by a body. Since it is still possible
to give more momentum to a body moving at a speed close to that of light, we must
conclude that increasing the momentum leads to an increase in the momentum capac-
itance, i.e., the mass, of the body (Fig.13.22).

Giving a body more momentum also means giving it more energy. Therefore, there
must be a close relationship between the energy and the mass of a physical system.
This is known as the 

 

equivalence of mass and energy

 

 in the theory of relativity.
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FIGURE 13.22.

 

Increasing the mo-
mentum of a body only partially 
leads to an increase of speed. The 
mass of the body increases as well, 
particularly at speeds close to the 
speed of light. Since the energy is in-
creased as well, we find an important 
relation between energy and mass.
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Light Carries Momentum

 

One of the most important observations about light is that it also behaves as if it were
a stream of particles—called photons—with properties which in some ways are like
those of ordinary bodies. Photons carry momentum, just like bodies, but they cannot
move at speeds other than the speed of light. Observers moving at totally different
speeds with respect to each other will all measure the same speed for the propagation
of light.

Since photons carry momentum, we introduce the momentum capacitance 

 

m

 

 of light
and write

 

(13.20)

 

where 

 

c

 

 stands for the speed of light (

 

c

 

 = 2.998·10

 

8

 

 m/s). Since photons only exist at
this speed, adding more momentum to light means adding energy according to

 

(13.21)

 

(See Fig.13.23.) If we combine Eqs.(13.20) and (13.21), we must conclude that

 

(13.22)

 

In other words, the momentum capacitance and the energy of light are directly related.
The factor converting one value into the other is the square of the speed of light.

 

Momentum, Mass, and Energy of Ordinary Bodies

 

Now let us discuss ordinary bodies. It is known that a material body cannot reach or
surpass the speed of light. However, as it comes closer to this limit it continually be-
haves more like a photon. In particular, adding more momentum invariably takes an
amount of energy calculated by Eq.(13.21) for photons, as can be seen from either
Fig.13.22 or Fig.13.23.

What are the properties of bodies if they start behaving more like photons if moving at
very high speeds? Most important is the momentum-speed relation which introduces
the momentum capacitance. If we use Eq.(13.22) for the mass and write

 

(13.23)

 

then this relation changes to the one for photons as the body comes close to the speed
of light. It is equivalent to Eq.(13.21) for light if we use 

 

v

 

 = 

 

c

 

 for the latter.

Let us now consider a process of adding a small portion of momentum 

 

∆

 

p

 

 to a body
moving at speed 

 

v

 

. This requires adding an amount of energy 

 

∆

 

W

 

 = 

 

v

 

∆

 

p

 

. Since, accord-
ing to Eq.(13.22), we also have 

 

∆

 

W

 

 = 

 

c

 

2

 

∆

 

m

 

, we conclude that

Integration of this equation yields

 

(13.24)

 

(See Fig.13.24.) Here, 

 

m

 

o

 

 denotes the mass of the body when it is at rest. As we have
seen in Fig.13.22, the mass of the body increases as momentum is added to it, and our
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FIGURE 13.23.

 

Creating light hav-
ing momentum 

 

p requires a quantity 
of energy equal to 

 

cp (to “lift” the 
momentum to the speed 
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The quantity c2m is 
integrated over 

 

m from mo to m, 
whereas the quantity 

 

p is integrated 
over 

 

p starting at 0.
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result tells us how this happens. The relation can be expressed also in terms of the en-
ergy of the body:

 

(13.25)

 

This is a most remarkable result as we can see by considering its limit for a body at
rest. Such a system does not have any momentum which means that

 

(13.26)

 

In other words, a body at rest still possesses energy equal to the product of the 

 

rest mass
m

 

o

 

 and the square of the speed of light. We call it the 

 

rest energy

 

 

 

W

 

o

 

. This is the source
of the interpretation that energy and mass are one and the same physical quantity which
is conserved. Adding energy to a body makes it heavier and more inert, which also hap-
pens if we increase its mass. Remember that we used this property of energy to argue
that the quantity responsible for making a body warm cannot be energy (Chapter 8).

We can show now how the mass of a body depends upon its speed. Set 

 

p

 

 = 

 

m

 

v

 

 in the
relation between momentum and mass, i.e., in Eq.(13.24), and solve for 

 

m

 

:

 

(13.28)

 

(Fig.13.25). This proves that the mass of an ordinary body would become infinite if it
were to move at the speed of light which, therefore, is impossible.

 

Geometrical Consequences

 

There are some fascinating geometrical consequences of the properties of motion at
high speeds. Since light always has the same velocity viewed from different frames of
reference, and since bodies cannot reach or surpass this speed, the rules for adding ve-
locities must be different from those we ordinarily know. At ordinary speeds, two cars
heading toward each other will collide at a relative speed which is the sum of the indi-
vidual values. This can no longer hold for speeds close to the speed of light. For exam-
ple, if a cosmic ray particle moves toward the Earth at a speed approaching that of light,
a different observer moving toward the particle at high speed relative to the Earth will
still measure a velocity of the particle which is smaller than the speed of light.

Furthermore, space and time have properties we would not expect from everyday life.
In particular, measurements of distances and time intervals depend upon the motion of
the observer, with different observers reporting different distances and times. These
counter-intuitive properties of space and time have been confirmed again and again in
high energy physics laboratories, where elementary particles are made to collide at
speeds approaching 

 

c

 

. Space and time really are not what they seem to be at first sight.
Therefore it is all the more surprising how far we can go with our simplified views of
everyday life.
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For ordinary bodies and for light, and for any velocity ranging from zero
to the speed of light, the energy and the mass of the system are the same
quantity. Their values are related by

(13.27)W mc2
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FIGURE 13.25.

 

As the speed of a 
body increases and comes close to 
the speed of light, its mass increases 
ever more sharply.
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13.8 The Particle Model of the Monatomic Ideal Gas

 

Physical processes are the result of the storage and transfer of some fundamental quan-
tities such as charge, entropy, or momentum. We have taken this view and combined it
with an image of a particular kind—namely that these quantities and the systems they
are contained in or flow through are spatially continuous. This is the fundamental as-
sumption of what is known as continuum physics. It has served us well so far in finding
out about macroscopic phenomena, and it will continue to guide us through much of
our investigations.

There exists a complementary view that physical phenomena are the result of the in-
terplay of countless microscopic processes undergone by the microscopic constituents
of matter and radiation. In crude terms, it is sometimes said that processes are the result
of the motion of the little particles the world is made out of.

In physics, two theories—

 

kinetic theory

 

 and 

 

statistical mechanics

 

—have been devel-
oped which aim to shed light on the properties of matter and radiation by considering
either the motion of many particles, or average properties of countless numbers of mol-
ecules, atoms, photons, ore even smaller constituents of physical systems. Aided by a
theory of the behavior of small entities—

 

quantum physics

 

—it has increased our
knowledge of the world around us tremendously.

Despite their importance and successes, kinetic theory and statistical mechanics do not
replace the continuum view of nature when it comes to explaining much of what we
are confronted with in science and engineering. They simply are not the right theories
to deal with macroscopic phenomena in a practical manner. However, they yield much
important information about certain special properties of matter and radiation which is
then used in macroscopic models of physical processes. In this sense, kinetic theory
and statistical mechanics on the one hand, and continuum physics on the other, are
complementary views of how nature operates.

Kinetic theory and statistical mechanics face a severe problem in an introductory phys-
ics course: with the exception of a very few applications, they are much too complex.
Still, it is important to see in what sense the microscopic view of nature can aid us in
understanding also the macroscopic aspects. 

The classical physics of collisions of simple particles dealt with in this chapter can be
used to present a first look at the utility of kinetic theory. Looking at a monatomic ideal
gas such as helium as a collection of individual tiny elastic bodies reveals relations be-
tween pressure of the gas and the energy of the particles, or between their average en-
ergy (due to motion) and the temperature of the gas. The latter relation also yields a
derivation of the temperature coefficient of energy of the monatomic ideal gas which
agrees very well with observation.

 

The Pressure of a Collection of Independent Elastic Particles

 

In 

 

n

 

 moles of a gas there are 

 

N

 

 = 

 

nN

 

A

 

 particles, where 

 

N

 

A

 

 = 6·10
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 particles/mol is the
Avogadro number (Chapter 6). Consider 

 

N

 

 such particles in a cubic box having sides
of length 

 

d

 

 (Fig.13.26).

 

 

 

The particles strike a certain wall at time intervals 

 

∆

 

t

 

i

 

 = 2

 

d/

 

v

 

xi

 

.
Here, the index i is used to number the particles, and we consider the 

 

x

 

-component of
the motion of particles striking the right wall of the container in Fig.13.26. With each
collision, a particle transfers an amount of momentum

to the wall. 

 

m

 

 is the mass of a single particle.
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FIGURE 13.26.

 

Particles inside a 
box collide with the walls. The trans-
fer of momentum to the walls creates 
the pressure of the gas upon the en-
closure.
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The pressure of the gas leads to the stress on the walls. In fact, the pressure is equal to
this stress (Section 13.2), which is equal to the amount of momentum transferred per
time per surface area. For 

 

N

 

 particles this is

 

V

 

 stands for the volume of the container. Since, for particle 

 

i

 

,

and since the direction into which the particles are moving are independent of each oth-
er, we expect that on average

Therefore, the pressure of the gas turns out to be

 

(13.29)

 

W

 

 is the total energy of the gas. This is so since the particles only have energy due to
their translational motion (they do not have any other characteristics that could give
them more energy on other grounds).

 

Energy and Temperature

 

If we combine the result of the particle model with the equation of state of the ideal
gas, 

 

PV

 

 = 

 

nRT

 

 (Chapter 12), we obtain

Here we have introduced the Boltzmann constant 

 

(13.30)

 

which is also called the gas constant for a single particle. Therefore, the average (ki-
netic) energy of a single particle is 3/2

 

kT

 

, which means that

 

(13.31)

 

Therefore, for the monatomic gas, the average of the square of the particle speed is di-
rectly proportional to the temperature of the gas.

We can not derive the value of the 

 

temperature coefficient of energy

 

 of the monatomic
gas. According to definition, 

 

C

 

V

 

 = 

 

∂

 

W/

 

∂

 

T

 

. For our gas we obtain

 

(13.32)

 

This shows that the molar temperature coefficient of energy is 3/2

 

R

 

 (Chapter 12).
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Questions

 

1. Considering that a body can move in a complicated manner—
combining rotation and translation—how would you define
translational motion? What characterized translation?

2. How could you detect if a certain body violated the law of
equivalence of inertial and gravitational mass?

3. Two coins having the same mass and lying on top of each oth-
er are in free fall. Should there be momentum flowing across
the surface where they touch? What if the upper coin had a
gravitational mass twice the inertial mass? What if the gravi-
tational mass of the lower coin were twice the value of its in-
ertial mass?

4. Does the velocity of the center of mass of two bodies change
after a collision? What does it take to change the motion of the
center of mass of a system?

5. A ball strikes a wall perpendicularly, and bounces off after an
elastic collision. It had a certain momentum before the colli-
sion. How much momentum is transferred to the wall? What
does the wall do with the momentum? What happens to the
energy of the ball?

6. During a one-dimensional collision, two cars lose momentum
because of friction. How does Eq.(13.5) change? 

7. How does a rocket work?

8. In an explosion, pieces of a body fly off in different directions.
How—and where from—do they get their momentum?

9. Why should the mass of a body increase as its speed ap-
proaches the speed of light?

10. The pressure of a gas exerted upon the walls of a container
can be viewed as the result of momentum transfer of particles
to the wall. We know that the pressure is a quantity which ex-
ists throughout the body of the gas. Can you use the kinetic
theory to explain the pressure in the interior of the gas where
there are no walls?

 

Exercises

 

1. Estimate the momentum of the following bodies. a) The Earth
on its orbit around the sun. b) A car with four passengers mov-
ing at 60 m.p.h. c) The bullet of a hand gun. d) A mosquito in
full flight.

2. A glider having a mass of 2.0 kg is pulled from rest across an
air-track with a string for 3.0 s. The momentum current
through the string measures 0.50 N. a) Determine the tensile
stress in the string. The diameter of the string is 1.0 mm.
b) How much momentum has been flowing into the glider?
c) Determine the change of momentum of the glider. d) What
is the final velocity of the body?

3. The stress in a rope having a diameter of 2.0 cm is 4.0·10

 

5

 

N/m

 

2

 

. Determine the momentum current flowing through the
rope.

4. A heavy block rests on top of a table. Momentum flows at a
rate of 200 N from the gravitational field into the block, and
at the same rate from the field into the table. a) Determine the
momentum current from the block to the table. b) How large
is the total momentum current through the four legs of the ta-
ble. c) Each leg has a circular cross section with a radius of
1.5 cm. What is the stress in each leg?

5. Electrons are accelerated in a CRT through a voltage of 2.0
kV. What is the energy, the speed, and the momentum of a sin-
gle electron? The mass of an electron is 9.11·10

 

–31

 

 kg. Ne-
glect relativistic effects.

6. A ball strikes a wall perpendicularly, and bounces off after an
elastic collision. Its mass and speed before the collision are
0.40 kg and 10.0 m/s, respectively. Determine the change of
momentum of the ball. How much momentum is transferred
to the wall?

7. A ball of putty of mass 0.25 kg strikes a wall at a speed of 5.0
m/s. How much energy is released in the process? What hap-
pens to the energy which is released? What processes is it
used for?

8. A football player kicks a ball which then flies off at a speed
of 9.0 m/s. The ball has a mass of 400 g. The foot touches the
ball for approximately 0.10 s. a) Determine the average mo-
mentum current from the foot to the ball. b) Normally, the
football will also rotate. Does this fact change your answer for
the first question?

9. The system dynamics diagram in Fig.13.15 depicts a one-di-
mensional inelastic collision of two bodies. Take the bodies to
have, respectively, masses of 2.0 kg and 1.0 kg, and speeds of
7.5 m/s and 0. Let the momentum current be constant at 50 N.
a) How much momentum is exchanged? b) How long does
the collision last? c) Determine the velocities as a function of
time. d) Determine the rate at which energy is released as a
function of time.

10. A car having a mass of 1000 kg moves in an easterly direction
at an angle of 30

 

°

 

 toward the south. Its speed is 30 m/s.
a) Determine the components of the velocity and the momen-
tum of the car in a coordinate system where the 

 

x

 

-direction
points east, and the 

 

y

 

-direction north. b) What is the kinetic
energy of the car? c) The coordinate system is rotated clock-
wise by an angle of 60

 

°

 

. How does the momentum vector
change? d) By how much does the kinetic energy change after
the coordinate system was rotated? e) Do the components of
momentum and velocity change?

11. An elastic ball having a mass 0f 0.20 kg and a speed of 8.0 m/s
hits a wall at an angle of 45

 

°

 

. Determine the motion of the ball
after the collision. Determine what happens to the compo-
nents of momentum which are parallel and perpendicular to
the wall. What happens to the energy of the ball.

12. Earth and Moon orbit their center of mass in about 27 days.
Determine the momentum of the system for an observer mov-
ing with its center of mass.

13. Electrons have a rest mass of 9.11·10

 

–31

 

 kg. a) Determine
their rest energy. b) If the energy of an electron is 1.2 times its
rest energy, what is its mass? What is its momentum?
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Problems

 

1. A flat open car having a mass of 1000 kg move horizontally
without friction at a speed of 3.0 m/s. A person having a mass
of 100 kg jumps off a tree into the moving vehicle. Then the
person runs in the direction of motion

 

 

 

and jumps off of the
moving vehicle at a speed of 5.0 m/s

 

 

 

relative to the vehicle.
a) How large will the speed of the vehicle be after the person
has jumped off? (Hint: Solve the problem in two steps.)
b) How much energy was lost for motion after the person
jumped onto the car? (Neglect the energy of vertical motion.)
c) How much energy did the person release at least while
gathering up speed for the jump off the car? 

2. A ball of putty having a mass of 0.20 kg is thrown horizontal-
ly against a still standing block of wood (having a mass of 1.0
kg). The ball sticks to the block and the two bodies continue
to move together at a speed of 4.0 m/s. a) Draw the fluid im-
age of the process, and calculate the speed of the ball before
the collision. b) Repeat the problem for an observer moving
at a speed of 10.0 m/s in the same direction as the ball. 

3. A bullet having a mass of 3.0 g and moving at a speed of 400
m/s first goes through a wooden board mounted on a glider on
an air-track. Afterwards, it gets stuck in a board mounted on
a second glider. The masses of the gliders (including boards)
are 750 g and 747 g, respectively. They were at rest initially
and collide after moving three and one meters, respectively.
a) How fast do the gliders move after the bullet hit the boards?
b) How much energy has been dissipated as the result of the
bullet going through the first board?

4. Determine the speed of the center of mass of the system of
three bodies in Problem 3 before the bullet struck the first
board, after it went through the first board, and after it got
stuck in the second board. Interpret the result.

5. The collision in Fig.13.19 effectively lasts for about 0.10 s.
Determine the direction and the magnitude of the average mo-
mentum flux during this period for bodies A and B. How does
the direction of the momentum flux change if the collision is
shorter?

6. Two discs move without friction on an air table and collide as
shown in the stroboscopic image (Fig.13.28). The mass of the
second disc is 1.5 times smaller than the mass of the first one.
a) Determine the absolute value and the direction of the ve-
locity of the second disc after the collision. b) Is the energy of
the discs due to motion conserved during the collision?
c) Determine the velocity vector of the center of mass of the
system before and after the collision.

2.0 m
3.0 g

400 m/s

750 g 747 g

FIGURE 13.27.

7. Two discs move without friction on an air table and collide as
shown in the stroboscopic image (Fig.13.29). Determine the
ratio of the masses of the two discs. Do we determine inertial
or gravitational mass in this manner? Why? 

8. The black ball collides elastically at a speed of 10 m/s with
the white ball which is at rest (Fig.13.30). The white ball
moves at an angle of 60° to the original direction of the black
ball. The speed of the white ball is measured to be 5.0 m/s.
Both balls have a mass of 2.0 kg. a) In what direction and at
what speed will the black ball be moving after the collision?
b) If the collision takes 1/10 s, how large is the average mo-
mentum flux with respect to the black ball (absolute value and
direction)? 

9. Electrons are accelerated through a voltage of 240 kV. Deter-
mine the energy and the speed of a single electron using the
classical relation for kinetic energy. Since the speed of an
electron is fairly close to the speed of light, determine the
mass, momentum, and the speed according to the relativistic
relations. Compare the two methods. The mass of an electron
is 9.11·10–31 kg.
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