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FIGURE 13.1. Identical steel balls
colliding. If the first ball is release
at a certain height and then collid
head on with a second one hangi
without mwing, the latter mees off
at the final speed of the first, whil:
the first comes to rest. This is an
ample of a completely elastic coll
sion.

Chapter 13: Storage, Transfer, and Balance of Momentum

Mechanical processes can blained just lile electrical or thermal ones: thare the

result of the storage and the transfer of a couple of fundamental quawtities! find

here that translational phenomena are the result of the storage and transport of momen-
tum. Indeed, we say that a mechanical process is taking place if momentum (or angular
momentum) is transported from one body to anoffie geometrical side of motion—

the fact that maeing bodies change their location—does not really characterize a me-
chanical process (Chapter 14).

13.1 Collisions: Storage, Exchange, and Conservation
of Momentum

Collisions nicely demonstrate the fundamental property of bodies in motigrcahe

tain a quantity of motion if themowe, and the transfer this quantity if theinteract
mechanically with other bodie®/e notice this, forxample, if a person runs into us,

if a snav ball hits us, if a ball is hit by a bat, or if we run into@lwA body at rest does

not have this effect if we just touch it. Obviously, a moving body carries a quantity of
motion, more, if it iséster and more, if it is biggein collisions, quantities of motion

are exchanged from body to body.

Examples of Collisions

Collisions are an important class of mechanical phenoniérey. occur at eery
scale—large and small, fast and slow. Here are some examples:

Steel balls on strings hitting others (Fig.13.1).
Coins or billiard balls colliding on a table.
Train cars when hooking up.

Elementary particles in accelerators.

vvyvyyvyy

Planets, stars, and galaxies.

S L

Take a closer look at the phenomenon shown in Fig.13.1. The moving body has a cer-
tain quantity of motion just before the collisidrhe interaction leads to this quantity
being transferred to the second steel Bk frst body must hae lost all of its motion,

since it comes to rest after the collision. Collisions can lythmy between totally
elasticand totallyinelastic The latter occurs when twbodies colliding join or mge

to form a single body.

Large cover picture: Composite Hubble Space Telescope image of Jupiter and Comet Shoemaker-
Levi. Small inset: Infrared image of fireball of Fragment G on July 18, 1994, Keck Observatory.
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13.1 Collisions: Storage, Exchange, and Conservation of Momentum

Extensive and Intensive Quantities in Translational Motion

Here is an image which tells us more about the nature of the quantity of motion of a
moving body. Divide a moving body into two parts. Obviously, both parts move at the p
same speed: the speed is neid#id among the part&ig.13.2). Howevemwe imagine

a body possessing a quantity of motion which v@déid into two parts whose sum is

equal to the quantity of motion of the entire bdidye quantity of motion is commonly Momentum p
calledmomentum

Velocity v

Each of the basic classes of phenomena treated in previous chapters demonstrated t Velocity v, = v
existence of an extensive and an associated intensive quantity (Table 13.1). This is nP;
different for translational motion. Indeed, momentum agidoity play the same roles

for mechanics as do charge and electric potential for electric phenomena. P2

Velocity v, = v

Momentump =p; +p,
TABLE 13.1. A list of extensive and intensive quantities

_ ) _ ) FIGURE 13.2. If a moving body is
Phenomenon Extensive quantity Intensive quantity divided into two parts, each part
moves at the same speed. Howe\
Hydraulics Volume Pressure each section only contains a part
— . ) the momentum of the entire body
Electricity Charge Electric potential
Gravity Gravitational mass Gravitational potential
Motion (Rotation) Angular momentum Angular speed
Chemistry Amount of substance Chemical potential
Heat Entropy Temperature
Motion (Translation) Momentum Velocity

Conservation of Momentum a

Mechanical phenomena here on Eartkegius the impression that motion dies by itself —
and that it has to be initiatedaig and agin. By itself, a rolling ball comes to rest, and

we have to push it if we want it to move again. In fact, if we ask if momentum can |

created and destroyed, we have to explain a number of everyday phenomena:

» | am starting to walk; my momentum increases.car accelerates on a street; . .
. . . Momentum is flowing from
its momentum increases (Fig.13.3a). Is momentum created? the Earth to the car

- ”
» A sliding body comes to rest. Is momentum destroyed? Positive direction

» Two identical bodies mong toward each other with equal speg&btey collide
and stick together. They come to rest. Is their momentum destroyed?

-+ —_—

» Two gliders at rest on an air track/eaa compressed spring between thEne. | | | |
spring is released, and the bodieymapart Fig.13.d). Is momentum creat- “
ed in this process?

Momentum is flowing from
o ) theleft car to theright car

Actually, the conclusion in all cases is that momentum cannot be created oyelistro
In the first two example, momentum comes from the Earth or flows into the Earth. FIGURE 13.3. An accelerating car
aresult, our planeperiences motion which is so glthat we cannot perogs it. The ~ gets its momentum from the eart
third and fourth gample clearly demonstrate that we should think of momentum as'WO cars being pushed apart by ¢

tity which may be either positi or ngative. In collisions, momentum is not lost. rr 9 separate momentum o |
quan y . y . P 9 : ’ . * itive and negative quantities. Mo-
The spring pushing the gliders apart &sras an agent to separate momentum into pPomentum flows from the left to the

itive and negative quantities. right car.

Part Ill: An Introduction to Motion 3



CCCE

CCC

FIGURE 13.4. The left-most steel
ball swings tavard three balls whic
are at rest. If the balls are identici
and if the collision is head on, the
moving sphere will come to rest, a
only the right-most ball will move
away at the speed at which the le
sphere had just before the impac
During the collision, momentum
must flow through the two balls
which remain at rest.

Chapter 13: Storage, Transfer, and Balance of Momentum

Falling and Pumping of Momentum

In the xamples of motion treated here, momentwwdl either “uphill” or “davnhill.”
In other words, it flows either from a body having low velocity to one having a higher
velocity, or vice-versa.

If momentum is flowing “downhill,” we speak ofvaluntarymechanical process; if it
is pumped “uphill,” the process is calletvoluntary

1. Atrain car is moving toard another one which is at resfter the col-
lision, the cars are coupled to each atker a little while after the col-
lision, friction is ngligible. From where to where does momentwwf
Does it flow “uphill” or “downhill?”What is the change of the momen-
tum of the first car compared to that of the second one?

2. Abilliard ball is hitting a second one at rest head on. Is momenbwn fl
ing “downhill” or “uphill” in this process?

1. Momentum flavs from the fist car to the second. Since thdocity of
the first car is always larger than or equal to that of the second, mon
tum is fbwing “downhill.” The changes of momentum of cars 1 and A
must be equal in magnitudeytlof opposite sigrifhe change of momen-
tum of car 1 is negative.

2. In this collision, there are tvphases. First, the miag ball is sleving
down until its speed is equal to that of the second. In the second phase,
the speed of therfit ball is still decreasing while that of the second one increases further
Therefore, during phase 1, the hitting ballastér, in phase 2 it moves more slowly than the
ball which was hit. Therefore, momentum first flows downhill before it is pumped uphill.

13.2 Modes of Momentum Transfer

In collisions, bodies loose oaip momentum. In general, in mechanical processes in-
volving translational motion. momentum is transferfBue transfer mechanisms can
take three different forms.

Momentum Transfer as the Result of Bodies Touching

In collisions, when we start naimg or come to rest on the ground, or if bodies are
pulled or pushed—with ropes, hands, sticks, springs, and so forth—the bodies in-
volved in the processes directly toudtherefore, momentum must be transferred
across the surfaced the bodies involved, artirough the bodiethemselves. In this

case we speak a@bnductive transfeof momentum. Again, the example of steel balls
swinging from strings and colliding demonstrate, that bodies are capable of conducting
momentum (Fig.13.4).

Conductie transfer of momentum is directly noticeable: it leads to mechanical stress
in the bodies through which momentum flowhis is what we feel in mechanical in-
teractions.

Fluids, Electricity, Heat, and Motion



13.2 Modes of Momentum Transfer

Momentum currents and stress.  In mechanical processes, momentuaw§. To Momentum
quantify the phenomenon, we introduce the notionrabenentum currerdr momen- current I,

tum flux which we abbnéate byl,,. It tells us haw much momentum isdiving across
a system boundary in unit time. \

The Sl-unit of the momentum current is calledin (N).As a consequence, the unit
of momentum must be N-s (Newton-second).

Consider a block of aod being pushed by a stick on a horizontalasief(Fig.13.5).
The block accelerates, it obtains momentum which masttfirough the stick to the
block. The stick and the block are both under compressional mechanical stress. Hc
strongly the material is stressed is measured bydense the current is if measured
at a surdce.The thinner the stick for the same loading, the higher the stress. If the stic
is thinner the same momentum current musivfthrough a smaller cross section. Me-
chanical stress is quantified by introducingth@mentum current density
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lp = Ajp (13.1)

The Sl-unit of the momentum current density b4 N/n?. In other vords, the current
density measures tmthe current is distrilted wer the suidice through which itdws.

This distrilution is a fundamental mechanical quantity which tells us about the state of o
stress of a material. FIGURE 13.5. When qules intera
mechanically by touching, momei
tum flows through the bodies and
across surfaces. The surface den
B Note that in a material undeompressional stresmomentumdivs in the of the momentum current is the m
positive spatial directiorfFig.13.9. If the material is undetension mo- sure of mechanical stress.

mentum flows though it in tmegativedirection

Surface A

Now consider the case of theoaden block aain. Assume that we push it in such a

way that it slides across the rough surface at constant speed. As far as the stick is con-

cerned, its situation is the same; it is under compression, and it communicates momen-

tum to the block. Haever the blocks speed is not supposed to change which means

that its momentum cannot changeerefore, momentum musof out of the body at

just the same rate at which it re@s it. Naturallythis is the result of friction at the Momentum +X
bottom of the block. Note that the momentum supplieddisidevays out of the body current I, —_—
leading to what is called shearing stress (Fig.13.6).

B If momentum flows sideways through a body, this leasisearing stress. ‘ ‘ -
Alternatively, this is called tangential stress

. . Surface A
Pressure as normal stress. We hare knavn a special case of mechanical stress for

quite a while already—namely tpeessue of flids If we select a portion of auild as

a bodywe see that this body presses upon the surrounding matbisamaterial may FIGURE 13.6. Shearing stress is tl
be more flid, or a part of a containerall. Either vay, the situation is just as in ;ﬁgﬁ{b% the sideways flow of mo-
Fig.13.5where the stick pushes the block; we couldehased a €lid under pressure '

to have the same effect upon the block.

There is one notable éi#frence, howeveWhereas a solid stick can be used to also set
up tangential stress on the sué of another bogdw fluid cannot do so, unless it is vis-
cous. Even a viscouauftl cannot transmit momentum obliquely to a acefif it is at

rest. Either waythe normal component of the momentunx fhcross afiid surface is
called the pressure of theifi. The unit of pressure is the same as that of a momentum
current density. Therefore, Pa = N/m

Part Ill: An Introduction to Motion 5
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FIGURE 13.7. Momentum flovs di-
rectly into every part of a body
through the Earth’s gravitational
field. Instead of currents, we have
source rates of momentum. The
dashed lines are supposed to rep
sent momentum flow through the
gravitational field. They are not
drawn realistically.

Momentum
currents |,

FIGURE 13.8. In abody atrest at tt
Earth’s surface, the momentum s
plied through the gravitational fiel
(sources in the body)dvs out agin
through the bottom. The currents
flow through the material (conduc
tion), and the body is under compi
sional stress.

Chapter 13: Storage, Transfer, and Balance of Momentum

Bodies Falling at the Surface of the Earth

Bodies can be set in motion without direct touch by another oBgen eample take

a stonedlling at the sudce of the Earth. Since the body is speeding up, its momentum
must be increasingVe say that it receés momentum from the Earth (which therefore
mowes in the opposite directionward the stonephroughthe Earths gravitational

field (Fig.13.7).

This transfer has completely f#ifent properties than conduaitransferBodies do
not touch; momentum does naivil through bodies, it dwsdirectly into (or out of)
each partof a body without infuencing other part§his is a wlumetric process, as
opposed to a swate process as in conduction. It heas/much in common withadi-
ative transferof entropy into and out of bodies (Chapter 10).

As in the case of radiation of heat, we introduce source rates to quantify the transfer of
momentum. Amomentum soge rate 2, tells us, hav much momentum a body re-
ceives oerall per unit time. It has the same units as that of a momeniymémely
Newton.

Note that the transfer of momentum directly into and out of bodies does not lead to me-
chanical stress by itselfhere must be a reason for momentumaw through the ma-
terial of a body for stress to occur (Fig.13.8).

What we describe here is the result of the interaction of bodieseddsl Tihere are
other xamples of such processes. Electrically gedrbodies react to electriels,

and meing chaged bodies or magnetized materials reeenomentum through the
magnetic feld (Chapter 16, andatV). Just as a body has to be electrically gedr

to react to an electric field, it has to be “gravitationally charged” to be influenced by a
gravitational field. The gravitational clugr is the gratational mass, and the interac-
tion of a stone and the Earth’s gravitational field leads to the weight of the body.

Momentum Transfer with Fluids: Convective Momentum Currents

Momentum can be transferred into and out of systems withrity fluids. The flow-
ing—and therefore moving—tfid contains momentum. If itdivs into or out of a sys-
tem, it brings or talis some momentum, leading to a momentum current with respect
to the system.

Conductive and radiative transfer of momentum keep the material integrity of a body;
they do not change the mass of a hofansfer with flids—which is called carec-
tion—does not. Here, we only study the motion of bodies, not of open systems which
accept the flow of fluids. Convective transfer is treated in Part IV of the book.

1. A body is pushed by a beam through which a momentum current of 7 =7
N flows for 10 s. Hw much momentum is transferred to the bod
through the beam? If at the same time an amount of momentum equ
700 N-s flows out of the body, by how much should its momentum hi
changed?

Q

3. Ifin Fig.13.7 the positw direction of space is chosen to point apids, where does momen-
tum come from or go to?

2. The beam in Question 1 has a cross section of 0.085How large is
the mechanical stress in the beam? In which direction of space is mo-
mentum flowing?

4. Change the positvdirection of space iRig.13.8 to the upard direction. Does the conduc-
tive momentum flow through the cylinder change direction? Does this change the stress?

Fluids, Electricity, Heat, and Motion



13.3 Momentum, Velocity, and Momentum Capacitance

1. With a current of 120 N flowing constantly over 10 s, an amount of n
mentum equal to 120 N - 10 s = 1200 N-s will have been communic:
to the bodySince momentum is consen), the change of the momenturr A
of the system must ki = 1200 N-s — 700 N-s =500 N-s.

2. If the momentum current is unifornver the cross section of the beam
the momentum current density (which is the stregg)Hd,/A=120 N
/0.0050 i = 24-18 N/n?. The beam is compressed, therefore momen-
tum is flowing in the positive direction of space.

3. Now the body isdlling in the negative direction. It®locity is becoming more gative in
the course of timeTherefore, momentum must leathe bodyThere will be sinks of mo-
mentum rather than sources with respect to the, )y momentum will @w through the
gravitational field to the Earth.

4. Since we no hze sinks of momentum with respect to the hodgmentum must be supplied
to it through its bottom cross section resting on the floor. Momentum is transported conduc-
tively through theinder in the upward (positve) direction. Naturallythe stress is still com-
pressional.

13.3 Momentum, Velocity, and Momentum Capacitance

The momentum of bodies depends upoa tactors. First, for a gen bodythe higher

the \elocity, the higher the momentum. Secondfeltént bodies mang together at the

same speed usually containfdient amounts of momentuifhere is a quantity which

measures the “size” of a body such that the bigger the “size” the more momentur- *
contains at a given velocity. Note that the “size” cannot be the volume of a body. —_—

[]
Dependence of Momentum Upon the Velocity o
. . . . . . . p P =
Simple measurements of completely inelastic collisions of identical gliders on an ' ’
track demonstrate that the momentum of a body must be proportional éboitgy viz
(Fig.13.9):
]
p~v (13.2) z A\
p* =py/2 Pt =p,/2

Actually, this relation only holds foralocities which are small compared to the speed
of light (Section 13.Y. Note that since theelocity can either be posi# or negative,

we expect the same to be true for momentum as well. FIGURE 13.9. Two identical glider:

collide on an air-track. The first w
moving, the second &s at restfter

The M t c it the inelastic collision, the momen
e Momentum Lapacitance tum is split among the bodies. Me

Obviously, the &ctor of proportionality relating momentum arelacity in Eq.(13.2)  surements shothat the speed of tt
measures o much momentum a body contains per ualbuity; such adctor has all  ¢ombined system is half that of tf

. . . first glider before the collision.
the properties of a capacitance (Table 13.2):

momentumcapacitance = P (13.3)
|4

The momentum capacitance measuregimoich momentum has to be added to a body
so it will have a certain @locity. Since it is harder to set a body with @&amomentum
capacitance into motion, this factor is also said to measuiectttia of the body. For

Part Ill: An Introduction to Motion 7



FIGURE 13.10. Fluid image of mo-
mentum. The momentum of a bot
is like the amount of fluid in a con
tainer. The level of the fluid and tt
cross section of the container rep
sent the glocity and the inertial ma
of the body, respectively.

Chapter 13: Storage, Transfer, and Balance of Momentum

this reason, the momentum capacitance is commonly calléuktitiel mass mof the
body. In other wordan, = p/v, or

p=mv (13.4)

The inertial mass is gén the same unit as the gtational mass, i.e.nf] = kg. The
reason for this will be discussed further elomentum capacitances of bodies can
be inferred from the measurement of the outcome of collisionasawve shall see
shortly, from the measurement of their gravitational masses.

TABLE 13.2. Capacitances of physical systems

Field Capacitance
Hydraulics Ky =dV/dP
Electricity C=q/U

Rotation J=L/w

Heat K =ds/dT

Motion (Translation) m =plv

The Fluid Image of Momentum

The relation between momentunelacity, and inertial mass of a body can be cast in
the form of a graphical image already used iwviores chapters (Fig.13.10). A body is
represented by a (straighalled) container whose cross section i®tato be the mo-
mentum capacitance, i.e., the inertial mase fluid contained in the imaginary tank
represents the momentum stored, and the [&f the fluid denotes the velocity of the
body.

This image is analogous to what we already used for rotational processes (Chapter 5),
and \ery similar to the ydraulic image of other quantitiebhe drawing in Fig.13.10
shows the glocity of the body with respect to alue of zero. For the purpose of dis-
cussing motion here at the sagé of our planet, we can associate this speolgth

the velocity of the Earth. The Earth itself is like a giant reservoir of momentum which
supplies or recees quantities of motion without beindexdted by the processes of or
dinary bodies. The velocity of a body, and therefore its momentum, can be positive or
negative with respect to the level of this reservoir.

Fluid Image and Momentum Balance in Collisions

The fluid image can be used to visualize collisions betweerbtvdies in a single di-
rection of spaceHig.13.11).The momentum of both bodies is measured with respect
to the same obsegv (which may be tan to be at rest rela@ to the Earth). It is com-
monly assumed that—at least right during the collision—the systenodbadies is
isolated from the rest of theonld, leaving its total momentum untouchédith p; +

p, = constant, we have

Apl = —Apz (13.5)

This is represented graphically in theidl or tydraulic image of the collision, and can
even be used to solve the problem graphically.

Fluids, Electricity, Heat, and Motion



13.3 Momentum, Velocity, and Momentum Capacitance

FIGURE 13.11. Completely inelasti
collision between two bodies in tr

Ap
//%\ / fluid image. The second body initi

”””””” 929 7/7//’ v=0 ly moves in the negative direction
// Apz/ v, The dashed horizontal line at v*
i denotes the commoméil velocity of

the combined body.

Inertial and Gravitational Mass

Bodies with lager inertia also are heiar. Indeed, this is a strict proportionality and
represents one of the most remarkable laws of nature:

m~m, (13.6)

It is commonly called thiaw of equivalence of gravitational and inertial massas
been verifed to high precision in mgrdifferent experiments, and therfiling has been
used as the basis of the general theory of véhatiEven though the phenomena of
gravity and inertia are quite ddrent superficiallytheir measures arevgin the same
values and the same unit, i.e. the kilogram. Natyraiya consequence of this prepor
tionality, we can use scales to measure the inertial mass of bodies.

EXAMPLE 13.1. Measuring the inertial mass of bodies in collisions.

a) A glider having unit inertial mass and a velocity of 0.90 m/s collides with a stationary glider.
Both move on an air-track. The bodies stick together after the collision, and their velocity is mea-
sured to be 0.65 m/s. Determine the inertial mass of the second glider. b) Two astronauts float
in a spacecraft. One of them pushes the other whereupon they float apart, the first with a velocity
of 0.50 m/s, the second with a speed of 0.60 m/s in the opposite direction. The first is known to
have a mass of 80 kg. How large is the mass of the second astronaut?

SOLUTION a) We can use Fig.13.11, whete= 0, to solve the problem. The cross section of
the second container is unknown, however, we know the final common velocity of the combined
system. Using Eq.(13.5), we can write

ml(v* —vl) = —n12(v* —0)
or
v¥ -y, _0.65-0.90

m, =-

b) The process is the reverse of a completely inelastic collision (the astronauts are moving to-
gether at first, and as separate bodies after the event). Here, before the process, both bodies are
at rest with respect to the observer, meaning that the containgig.13.11are empty. The

event leads to one container being filled at the cost of the other. In other words, momentum is
pumped from one to the other container. Again we use Eq.(13.5):

my (v, * =0) = -my(v, * ~0)

which leads to g= —v;*/ v,*m; = — 0.50/(-0.60)-80 kg = 66.7 kg.

Part Ill: An Introduction to Motion 9



Chapter 13: Storage, Transfer, and Balance of Momentum

13.4 Momentum and Energy in Collisions

The fluid image of momentum can be usedsplain part of the role of engy in the
motion of bodies. This is particularly useful for calculating the outcome of collisions,
since the lev of balance of momentum alone does natagt suffice to obtain results.

Energy of a Moving Body

As with all other phenomena, eggraccompanies also the processes of translational
motion. In particular, a muing body stores some eggrjust as a hot or chged body
does. A@in, the lydraulic image lets us visualize the emeassociated with motion.
Since we vie/ the “content” of a container as the momentum of the baag since
vi2 this content has to bdléd into the container—a process for which we needggrer
the enagy is equal to the product of thevés of the center of the content (which is v/2)
and the content (Fig.13.12):

v=0

11,
W== = (13-7)
VP My

The enegy stored by a body as a result of its motion is often chifexic enegy. Note
FIGURE 13.12. The energy of a that th d t that this i ial t Rether it tell
body associated with its motion is at the name does not mean that this is a special type afye erit tells us
like the energy stored with a fluid something about the system storing the energy.
a tank.

Releasing and Binding Energy in Collisions

In collisions, momentumdlvs from bodies of highelocity to those of lver velocity,
or vice-versa. Therefore, energy must be released or bound in these processes.

The fuid image sha's also hav much enagy has been released or bound from the start
to a gien moment during the collisiofihe amount of energy released corresponds to
the product of the amount of momentum transferred up to that pgimind the aver-
age “fall” of level @v) of the transferred momentum (Fig.13.13):

VVreIeased = _AV| pe| (13.8)

Ap, a4

FIGURE 13.13. Enegy released in
the “fall” of momentum is shown i
the fluid image of a collision. The
figure shavs the fist short time spa
during a collision. /

my

Enegy released can also be bound. In an elastic collisionxéongle, momentum is
pumped to higher lels after the bodies ha reached a commorlbacity during the

first phase of the collision. If all the energy released (up to the point where the speeds
of the bodies are equal) is bound for further motion, the collision is said to be com-
pletely elastic. Naturallyenegy which is not bound in such a process is dissipated, i.e.,
entroyy is produced. In a completely inelastic collision—which results in a single
body—all the energy released is dissipated.

10 Fluids, Electricity, Heat, and Motion



Collisions in a Single Direction of Space

Combining the lavs of balance of momentum and eqelets us calculate the outcome

13.4 Momentum and Energy in Collisions

of general processes of the collision of two bodies in a single spatial dimension. Con-
sider a completely elastic collision. Momentuatis—and eneyy is released—until
the common speed of a complete inelastic collision is reached. (See the inelastic line

in Fig.13.19. Since the collision is not dissipagi, the engyy released is bound in

m,

*
Inelastic line

G
/

m,

FIGURE 13.14. Fluid image of the
completely elastic collision betwe:
two bodies. The second one initia
mowed in the ngative direction. Th
enepy released during thedt phas:
of the collision (up to the inelastic
line) is used to pump again as mt
momentum from the first to the se
ond body.

pumping the same amount of momentum “uphill” during the second stage of the col-
lision. The final state is equal to the initial one mirrored at the inelastic line.

Dynamic Model of Momentum and Energy Balances

In previous chapters, we kia used the system dynamics representation of processes to
learn more about them. If we write the law of balance of momentum in terms of com-

binations of stocks and fis of momentum, and then managespress the momen-

tum flows, we can compute the processes of motion. In this chapter, however, we will

only be able to sobypart of the problem, since we still lack lwtedge of concrete re-

lations for momentum currents in collisions.

As an example of heoto introduce system dynamics modeling to deal with collisions,
again consider the completely inelastic interaction betweenhbwdies mwing in a
straight line Fig.13.15). Yu will see that—by simply assuming a form of the momen-

tum flux during the collision—we will be able to determine tmaffivelocity and the

amount of energy released.

Momentum 1

.

O—r

Mass 1 Velocity 1

Ipl

Rate of release

Momentum 2

.

a—

Velocity 2 Mass 2

Energy released

.

FIGURE 13.15. System dynamics
model of a completely inelastic co
sion of two bodies moving in a
straight line. Momentum balances
are expressed by stocks and flow
velocities are calculated like wate
levels, and the engy released by tk
fall of momentum is obtained by i
tegrating the rate at which it is re-
leased.

Since there are two bodies, we write the law of balance of momentum twice. There is
only one current, however, from the first to the second body, just as in communicating
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water tanks. We introduce two momentum fluxes, one for each body, where the fluxes
are equal in magnitudeubhae the opposite sign$he \elocities are calculated just
like water levels in hydraulic models (Chapter 1).

Lacking a proper la for the momentum current, wevgiit a constantverage value
such that the momentum igahanged in a short period equaling the duration of the
collision. We simply set the current equal to zero as soon agtbeities have become
equal.This ensures that theehocities of the bodies stop changing when the collision
is over. Naturallyby doing this we still do not kia a realistic model of how the colli-
sion proceeds in time.

While momentum flars from the fist to the second bodgnegy is released at a rate
which is the in instantaneous form of Eq.(13.8), i.e.,

P= —Av|| p| (13.9)
Imagine the engy released to be stored in an intermediate “storagealdo be used
later in a follav up processTherefore, the release of eggrand its later use—can

be represented by a kind of balance of energy (Fig.13.15).

EXAMPLE 13.2. A partly inelastic collision.

A small truck bumps into a car from behind. The truck and the car were moving at 60 m.p.h. and
40 m.p.h. before the collision, and their masses are 1500 kg and 800 kg, respectively. If half of
the energy released is dissipated, what should the final velocities of the vehicles be after the col-
lision?

SOLUTION:First, we calculate the inelastic line (the velocity attained in a completely inelastic
collision). From Eq.(13.5) we find:

ml(v* —vl) = —n12(v* —v2)
or
= my, +myv, _ 1500[26.7+80017.8 m _

Mo236M
m +m, 1500 + 800 s s

Now we can determine the amount of energy released. The momentum which is exchanged up
to this point is

|pe| = |my(v* ~v,)| =[1500(23.6 - 26.7)|N [3= 4.65[10°N [
The average velocities of the vehicles during this first phase of the collision are 0.5(26.7+23.6)

m/s = 25.15 m/s, and 0.5(17.8+23.6) m/s = 20.70 m/s, respectivelyAW4§tR0.70 m/s — 25.15
m/s = — 4.45 m/s, the amount of energy released is

W geasea = ~AV|pe| = —(~4.45) 2.6510°) = 20.7[10°J

Half of this is used to pump an additional amount of momentum from the truck to the car. This
leads to two relations

s v7) =l
Weeased /2= [0-5(V2 * +v*) - O.5(v1* +v*)]n12(v2 * —v*)

whose solution i& ;* = 21.4 m/s and/ ,* = 27.7 m/s. The relations can be represented graphi-
cally in Fig.13.141If the collision had been completely elastic, the car would have had a final
velocity of 29.4 m/s, whereas the truck would decelerate to a speed of 20.5 m/s.
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13.5 The Momentum of Extended Bodies: The Center of

Mass
The momentum of a body can be expressed in terms of its velocity and its mass. Wit _—
extended bodies there is a problem wiefj its \elocity. In general, each point of a /

body has a diérent velocity Consider a sphere rolling on atfsurface (Fig.13.16), or
a spring being stretched, and the problem becomasushTherefore, we mustrfd a e
point which represents the translational motion of an extended body. - \

Velocity of the Center of Mass _

The problem is solved as follows. We will define the representative velocity of a body

such that the momentum calculated on its basis is equal to the sum of all the quanFIGURE 13.16. Different points of :
of motion of its parts. As the simplest possible example of a composite body, consrolling sphere have different veloc
a system consisting of justowery small bodies ing massesy, andm,, respective-  1€S: Still. there is a special point

L - - . . the body which we can tako repre
ly, moving in a straight line (Fig.13.17). The total momentum of the system is sent theytranslational motion. P

e

p=my; + myv, (13.10)

On the other hand, if we look at the system as a single body ofnmass, moving
at a certain velocity),, its momentum would be

p=(my +mp)vew (13.11)
The \elocity representing the translational motion of the system is calleclhaty
of its center of mass. From Egs.(13.10) and (13.11) we have m m
¢ C
Ve = my, +Mmyv, (13.12) _ —
m +my, v v
This definition of the velocity of the center of mass can be extended to any number m, M m,
particles in one or more spatial dimensions, as well as to spatially continuousidistrit, ¢ Y <
tions of mass. -
X
Consider agin the tvo mass points used ale(Fig.13.17). V@ can defie a special ’
point of the system by %
X{ + MX
Xem = X ¥ MpXe (13.13) FIGURE 13.17. A system consistin

m, +my, of two particles. The total momen

L ) tum defhes the elocity of the cente
which is called theenter of massef the system. Obviously, the center of mass moveof mass, and the particles positiol

at the speed.,,. To see this, we only e to calculate theelocity associated with the and masses deg the position of th
center of mass from Eq.(13.13). center of mass.

Properties of the Center of Mass

The center of mass of artended system has some important properties which will be
listed here. Actually, all the claims made can be proved.

» The motion of a body—and therefore its momentum—igags measured
with respect to an obsew If we tale an observer nving with the sameer
locity as that of the center of massagi in Eq.(13.12), the observer measures
a momentum of zero for the system (Fig.13.18).
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» If a system is mechanically isolated from the environment, i.e., if there are no

m h m, momentum transports from the system to th@renment or vice-grsa, its
< < momentum cannot change. Therefore, the velocity of the center of mass must
remain constant.
izl v2 » The center of mass of a system does net @ coincide with a material part
of the system.
Observer —_— . .
Ve » The \elocity of the center of mass of a system composed of particles corre-

sponds to thealocity the system awuld attain after all of its parts ngad into
a single body as a result of multiple completely inelastic collisions.

FIGURE 13.18. An obserer moving
with the center of mass measures

momentum of zero for the Systen ObserVerS and the Momentum Of BOdieS
Motion is alvays determined with respect to a chosen olese¥locities are mea-
sured with respect to such an observherefore, the momentum of a body also de-
pends upon the observer which has been chosen for a particular case.

We said that theelocity of the center of mass of an isolated system must remain con-
stant.This is not true for an obse&wvmaing at increasing or decreasing spéidtere-

fore, unless otherwise noted, we will only choose olessrfior whom the claim is true.
These are callemhertial observersr inertial frames of eferenceLooking at motion

from non-inertial frames requires axtension of the rules forrfding momentum cur-
rents which will be discussed briefly in Chapter 16.

1. Why is the motion of the center of mass represemtaf the motion of

an extended system?
2. Why does the elocity of the center of mass of a mechanically isolate Q

system remain constarif?hat kind of motion is therefore possible for
the center of mass of such a body?

1. The \elocity of this point multiplied by the total mass of the system |
equal to the total momentum of the body.

2. Mechanical isolation means that there are not momentum transports A
into or out of the bodySince momentum cannot be created or dgstto
the quantity of motion of the system must remain constdrg.motion
of such a system is either in a straight line with constant speed, or the
body is at rest with respect to the observer.

EXAMPLE 13.3. Center of mass of the Earth-Moon system.

Where is the center of mass of the system composed of Earth and Moon? The mean distance be-
tween Earth and Moon is 384,000 km, the masses of the two bodies aré&&g it 7.4-13%

kg, respectively. Assume an observer for whom this center of mass moves at a speed of 30 km/s.
What is the momentum of the system?

SOLUTION:The center of mass of the system is found on the straight line connecting the centers
of Earth and MoonKig.13.17. Introduce a coordinate systeradpordinate) along this line hav-

ing its origin at the center of the Earth. Therefore, we kawed m and, = 3.84-18 m. Using
Eq.(13.13), we find that
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_ Mm% + Mm%, _ 6.0010% [0+ 7.4010% [3.8410°

- o > m = 4680km
m, +m, 6.0(10% +7.400

Xem

Since the radius of the Earth is approximately 6400 km, the center of mass of the Earth-Moon

system lies inside the Earth.
||

13.6 Collisions in Two and Three Dimensions

Collisions in two—or three—dimensions demonstrate a centrally important feature
momentum: there are tw—or three—ndependent components of momentue,
components for which the rules found aoliold independenthAlternatively we may
say that momentum isvectorquantity.

s m, = 0.75kg
mg = 0.50 kg
20 A

15 . § At=0.020s
,é@lo 15 Scale:
éj§ 20
5 r.(:g (%ﬁ@ - / 25 T
B %% 5/ 20m

T

L&
\

Component and Vector Representations

Let us irvestigate the collision shen in Fig.13.19 First, we determine theslocities

of the bodies before and after the collision inxhandy-directions (Fig.13.20a). This
is done by measuring the distancerétbed in either direction during a certain number
of successie time interals (here there are six with a total intdref 0.12 s)These
components of distances argided by the total time inteay which yields the compo-
nents of the elocities. Finally the \elocity components are multiplied by the proper
masses of the bodies which leads to the components of momentum (Table 13.3).

a. Component representation b. Vectorial representation

Part Ill: An Introduction to Motion
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FIGURE 13.19. Elastic collision of
two magnetized pucks on an air-t
ble. Puck A moves from the left a
collides—without touching—with
Puck B which was at rest initially.
This is a drawing made according
a stroboscopic photograph of the
lision (single frames at a time inte
val of 0.020 s).

FIGURE 13.20. Component andec-
torial representations of a collision
two dimensions. Table 13.3 show
that each component of momentt
in the x-y coordinate system is ca
served individually. The triangle
formed of the vectors of momentt
demonstrates that the sum of the
mentum vector(s) before the colli
sion is equal to their sum after the
event.
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Components

Vectors m=1.75kg

FIGURE 13.21. Multiplication of ve-
locity components or vectors by tl
mass of the body. The velocity co
ponents or vectors simply are
stretched by the factor represente
by the mass.
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The components of momentum are calculated from the componendsooity by
multiplying the latter by the proper mass, i.e.,

Pxa = MaVya

(13.14)
Pxg = MgVyg

for thex-components before the collision (Fig.13.21).

TABLE 13.3. Components of momentum in the collision of Fig.13.19

A(position) Velocity Momentum
m m/s N-s
A before x-direction 0.178 1.49 1.11
y-direction 0.095 0.79 0.59
B before x-direction 0.000 0.00 0.00
y-direction 0.000 0.00 0.00
A after x-direction 0.070 0.59 0.44
y-direction 0.129 1.07 0.80
B after x-direction 0.163 1.36 0.68
y-direction —0.051 -0.42 -0.21

Having two or three independent components @lbeity and momentum means that
these quantities areswtors. Fig.13.20 demonstrates that theator of momentum is

a conserved quantity. We shdhis by determining theelocity vectors of the bodies
before and after the collision by evilmg an arrev in the direction of motion whose
length represents the magnitude of tekgity—called the speed—of a bodihe ve-
locity vectors are then multiplied by thalue of the mass of the associated body which
yields the momentum vector:

p=mv (13.15)

This relation is demonstrated in Fig.13.21.

Momentum and Energy in Collisions

Inspection of the alues in Table 13.3 preg that—within the bounds of errors made
by measuring the quantities—the sum obtftmmponents of momentum of the bodies
before the collision is equal to their sum after the process; the same is trueyfor the
component:

Pa * Pxg = pfA + pi(B (13.16)
pyA + pyB = pyA + pyB

B Intwo (thee) spatial dimensions, tleeexist two (thee) independent com-
ponents of momentum. For each component, tbpepties known for a
single one—storage, transfer, and conservation—hold independently.

Fluids, Electricity, Heat, and Motion



13.6 Collisions in Two and Three Dimensions

Again, within measuring errors, we see that the momentum of the bodies is ednserv
in the collision (Fig.13.20):

PA+Ps =Pa+Ps (13.17)

In analogy to the conclusion for the components reachegeab@ can say that mo-
mentum, as a vector, satisfies the rules known for a single component:

B In two (thee) spatial dimensions, momentum behaves like a vétder
mentum is stad, i.e., the sted quantity is a vectomomentumdiws, i.e.,
momentum fluxes @wvectors, and momentum is conserved, i.e., the law of
balance of momentum is a vector equation.

Energy in collisions . Enegy is not a ectorial quantityit is ascalar Therefore, there
are nax- ory-components of engy, and the engy of a body has to be calculated from
its speed, i.e., from the absolute value

|v| = \V>2< + v§ (13.18)

The energy of the moving body is

W= % mv|? (13.19)

in analogy toEq.(13.7) The alues obtained from the obsation of the collision
shown in Fig.13.1@nd listed irTable 13.3 prog that the engy of the me@ing bodies
is conserved as well since the collision is completely elastic; there is no dissipation.

1. Ifin Fig.13.19the perpendicular lines denoting a planar frame of-refe
ence are all rotated by the same angle, what happens to the compo
of momentum (or velocity) and the momentum vectors of the bodies
volved in the collision?

2. If body B moved in the same direction after the collision as did Body
before (Fig.13.19), in which direction would body A have to move after
the event?

1. Rotating the frame of reference does not change the appearance ¢
collision, i.e., the tracks of the bodies and the distances between suc
sive points, at all; neither is the time interehanged. The way vectors A
are determined sk that these are not changed by the rotafitwe.
components, heever change their alues. Still, gen though the indi-
vidual \alues are di€rent, the components of momentum still satisfy the
rules observed in this chapter. The laws of nature do not change.

2. The \ector sum of momentum before the collision must point in the same direction as that
after the process. Since the momentum of B already points in this direction, A may not have
a different direction. Body A must therefore move in the same line as it did before the colli-
sion, either forward or backward.
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FIGURE 13.22. Increasing the mo-
mentum of a body only partially

leads to an increase of speed. Th
mass of the body increases as wt
particularly at speeds close to the
speed of light. Since the eggris in-
creased as well, wenfil an importar
relation between energy and mas
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EXAMPLE 13.4. Inelastic collision in 2D.

Two cars collide at an icy intersection at right angles. The first car, having a mass of 700 kg,
moved at a speed of 50 km/h, while the second one, having a mass of 800 kg, moved at a speed
of 65 km/h. In the collision, the cars become entangled. Determine the direction and the speed
of the cars after the collision. How much energy has been dissipated?

SOLUTION:We use a vectorial representation of the collision (components would work just as
well). The momenta of the cars have absolute magnitudes of

|pa| = Ma|v 4| = 700050/ 3.6N 3= 9722N [3

|pg| = Mg|v | =800[65/3.6N [3=14440N [3

The directions are shown in the accompanying gr&pite momentum is conserved in the col-
lision, we have

*

Pa*+Ps =P

The magnitude and the direction of the resulting momentum vector are

[P =[Pl +[pe|” = V97222 +14440% N[3=17410N (3
and
¢ = arcten(|p;|/|p |) = arctan(14440/9722) = 56.1°
respectively. The speed of the cars moving after the collision is determined by

_ 1
my + Mg

*

\

*

17410 m _ 16m

T700+800 s s

The energy dissipated is equal to the difference of the energies of the bodies due to motion be-
fore and after the collision:

Wiss = (WA +WB) -wW

1 1 1 N
=0 mA|vA|2 +EmB|vB|2 S—E(mA + mB)|v |2

]
= 0.5[700 [13.892 +800[18.06% — 1500 |11.62] = 97kJ

13.7 Motion at Very High Speed

We may vonder what happens when weeya body more and more momentu¥o-
cording to what we kne so far its speed increases all the time. In thé@fimage of
Fig.13.10 the fluid level simply continues to increase.

Motion at \ery high speeds demonstrates features which are nehkatdaver speed.

In particular the speed of light cannot be surpassed by a. [®idge it is still possible

to give more momentum to a body wiing at a speed close to that of light, we must
conclude that increasing the momentum leads to an increase in the momentum capac-
itance, i.e., the mass, of the body (Fig.13.22).

Giving a body more momentum also meanangj it more enagy. Therefore, there
must be a close relationship between thegnand the mass of a pical system.
This is known as thequivalence of mass and enemyhe theory of relativity.
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13.7 Motion at Very High Speed

Light Carries Momentum

One of the most important observations about light is that it also behaves as if it were

a stream of particles—called photons—with properties which in soays are lile

those of ordinary bodies. Photons carry momentum, justiddies, bt they cannot

mowe at speeds other than the speed of light. Obseming at totally diferent P
speeds with respect to each other will all measure the same speed for thatijopag AW
of light. W=cp

Since photons carry momentum, we introduce the momentum capaciaridght c
and write

p=mc (13.20)

wherec stands for the speed of lightt £ 2.998-18m/s). Since photons onlyist at
this speed, adding more momentum to light means adding energy according to

W=cp (13.21)
FIGURE 13.23. Creating light hav-

(See Fig.13.23.) If we combine Egs.(13.20) and (13.21), we must conclude that ing momentunp requires a quantit
of energy equal top (to “lift” the

momentum to the spe
W = mc? (13.22) Peel

In other words, the momentum capacitance and theggnafrlight are directly related.
The factor converting one value into the other is the square of the speed of light.

Momentum, Mass, and Energy of Ordinary Bodies

Now let us discuss ordinary bodies. It is lumthat a material body cannot reach or
surpass the speed of light. Wever as it comes closer to this limit it continually be-
hawes more lile a photon. In particulaadding more momentumvariably tales an
amount of engy calculated byeq.(13.21)for photons, as can be seen from either
Fig.13.22 or Fig.13.23.

What are the properties of bodies ifytstart behaving more kkphotons if meing at
very high speeds? Most important is the momentum-speed relation which introduces
the momentum capacitance. If we use Eq.(13.22) for the mass and write

p= WZV (13.23)
c c2m

then this relation changes to the one for photons as the body comes close to the spe:

of light. It is equivalent to Eq.(13.21) for light if we uge c for the latter.

Let us nav consider a process of adding a small portion of momeuio a body
moving at speed. This requires adding an amount of ejyekW = vAp. Since, accord-

ing to Eq.(13.22), we also haéV = c2Am, we conclude that o "
p
Am=i2vAp = %EAp O c?mAm= pAp
c c°m
Integration of this equation yields
p

2 2 2 2
c{m? ~mé) =
Mo)=P ( ) FIGURE 13.24. The quantityc®m is

. . integrated ovem fromm, tom,
(See Fig.13.24.) Here), denotes the mass of the body when it is at Asstve have  \nhereas the quantityis integrated

seen in Fig.13.22he mass of the body increases as momentum is added to it, andoverp starting at 0.
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FIGURE 13.25. As the speed of a
body increases and comes close
the speed of light, its mass increa
ever more sharply.
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result tells us how this happens. The relation can be expressed also in terms of the en-
ergy of the body:

W2 =c2p? + (mocz)2 (13.25)

This is a most remarkable result as we can see by considering its limit for a body at
rest. Such a system does not have any momentum which means that

W(v = 0) = m,c? (13.26)

In other vords, a body at rest still possesses@nequal to the product of thest mass

m, and the square of the speed of ligkie call it therest energy\,,. This is the source

of the interpretation that erggrand mass are one and the sanysighl quantity which

is consered.Adding enegy to a body mads it hesier and more inert, which also hap-
pens if we increase its mass. Remember that we used this propertygyfteremgue

that the quantity responsible for making a body warm cannot be energy (Chapter 8).

B For ordinary bodies and for light, and for any velocity ranginonfrzero
to the speed of light, the eggrand the mass of the systera tre same
quantity. Their values are related by

W = mé (13.27)

We can sha now hav the mass of a body depends upon its speeg Setv in the
relation between momentum and mass, i.e., in Eq.(13.24), and soiae for

m=—o (13.28)
e

(Fig.13.25). This proves that the mass of an ordinary body would become infinite if it
were to move at the speed of light which, therefore, is impossible.

Geometrical Consequences

There are someaasécinating geometrical consequences of the properties of motion at
high speeds. Since light always has the same velocity viewed from different frames of
reference, and since bodies cannot reach or surpass this speed, the rules foeadding v
locities must be diérent from those we ordinarily kmoAt ordinary speeds, two cars
heading toward each other will collide at a relaispeed which is the sum of the indi-
vidual valuesThis can no longer hold for speeds close to the speed of laytexBm-

ple, if a cosmic ray particle mes tavard the Earth at a speed approaching that of light,

a different observer moving toward the particle at high speed relative to the Earth will
still measure a velocity of the particle which is smaller than the speed of light.

Furthermore, space and time have properties we would not expect from everyday life.
In particulay measurements of distances and time ialerdepend upon the motion of

the obserer, with different obsergrs reporting dierent distances and timekhese
counter-intuitive properties of space and time have been confirmed again and again in
high enegy physics laboratories, where elementary particles are made to collide at
speeds approachimgSpace and time really are not whattekeem to be atrfit sight.
Therefore it is all the more surprisingvh@ar we can go with our simpléd views of
everyday life.
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13.8 The Particle Model of the Monatomic Ideal Gas

Physical processes are the result of the storage and transfer of some fundamental quan-
tities such as chge, entropy, or momentum. We have taken thia aied combined it

with an image of a particular kind—namely that these quantities and the systems they
are contained in ordiv through are spatially continuoughis is the fundamental as-
sumption of what is knen as continuum pfsics. It has seed us well sodr in finding

out about macroscopic phenomena, and it will continue to guide us through much of
our investigations.

There &ists a complementary wiethat plysical phenomena are the result of the in-
terplay of countless microscopic processes \galer by the microscopic constituents

of matter and radiation. In crude terms, it is sometimes said that processes are the result
of the motion of the little particles the world is made out of.

In physics, two theorieskinetic theoryandstatistical mechanies-hawe been deel-

oped which aim to shed light on the properties of matter and radiation by considering
either the motion of marparticles, or eerage properties of countless numbers of mol-
ecules, atoms, photons, ore even smaller constituents of physical systems. Aided by a
theory of the behaor of small entities—quantum physies-it has increased our
knowledge of the world around us tremendously.

Despite their importance and successes, kinetic theory and statistical mechanics do not
replace the continuum wieof nature when it comes tamaining much of what we

are confronted with in science and engineering. They simply are not the right theories
to deal with macroscopic phenomena in a practical makiogrever, they yield much
important information about certain special properties of matter and radiation which is
then used in macroscopic models of/gibal processes. In this sense, kinetic theory
and statistical mechanics on the one hand, and continuysicplon the otheiare
complementary views of how nature operates.

Kinetic theory and statistical mechaniasé a sesre problem in an introductory yér

ics course: with the exception of a very few applications, they are much too complex.
Still, it is important to see in what sense the microscopiw wienature can aid us in
understanding also the macroscopic aspects.

The classical physics of collisions of simple particles dealt with in this chapter can be
used to present ast look at the utility of kinetic theory.ooking at a monatomic ideal

gas such as helium as a collection ofwdlial tiry elastic bodies keals relations be-

tween pressure of the gas and the energy of the particles, or between their average en-
ergy (due to motion) and the temperature of the.@§he latter relation also yields a
derivation of the temperature cdiefent of enegy of the monatomic idealag which
agrees very well with observation.

The Pressure of a Collection of Independent Elastic Particles d ; .<
i 4

In n moles of a gas there axe= nN, particles, wher&l, = 6-1G® particles/mol is the
Avogadro number (Chapter 6). Considésuch particles in a cubic boxwiag sides
of lengthd (Fig.13.26).The particles strig a certain &ll at time interalsAt, = 2/v,;.
Here, the indei is used to number the particles, and we consider-tmenponent of X\_
the motion of particles striking the rightof the container in Fig.13.26. With each

collision, a particle transfers an amount of momentum

Vi

FIGURE 13.26. Particles inside a
box collide with the alls. The tran:

Pe =2mvy fer of momentum to theails create
. . . the pressure of the gas upon the
to the wall.mis the mass of a single particle. closure.

Part Ill: An Introduction to Motion 21



22

Chapter 13: Storage, Transfer, and Balance of Momentum

The pressure of theag leads to the stress on thalle: In fact, the pressure is equal to
this stress$ection 13.2 which is equal to the amount of momentum transferred per
time per surface area. Rdrparticles this is

N

P= % Pei = z 2mVXiVXi :E%lmvz
£ d’A, d’2d V&2

1=1

V stands for the volume of the container. Since, for paiticle

2

-2 2
Vi —in +v

2
i tvi

and since the direction into which the particles areingpare independent of each oth-
er, we expect that on average

2 _.2 _ 2 2 _
Vi = Vi =vi O v =2y

N
2 a1, 2
P=-SY-m?=2w (13.29)
3v22 Y]

W is the total engy of the @s.This is so since the particles onlywkaenergy due to
their translational motion (tlyedo not hae ary other characteristics that could/gi
them more energy on other grounds).

Energy and Temperature

If we combine the result of the particle model with the equation of state of the ideal
gas,PV =nRT(Chapter 12), we obtain

i\/\N =nRT 0O W= 3 NKT
3V 2
Here we have introduced the Boltzmann constant

k=R/N, =1.3807[10 % JK (13.30)

which is also called theag constant for a single particléherefore, the\wrage (ki-
netic) energy of a single particle is BI2which means that

%m<v2> :ng (13.31)

Therefore, for the monatomiag, the asrage of the square of the particle speed is di-
rectly proportional to the temperature of the gas.

We can not derive the value of ttenperature coefficient of energythe monatomic
gas. According to definitiorG,, = 0W/T. For our gas we obtain

_0J B 03
C =— —nRTD—En

R 13.32
a7 o (13.32)

This shows that the molar temperature coefficient of energyRs(Gf2apter 12).
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Questions

Questions 4.

10.

Considering that a body can w&in a complicated manner—
combining rotation and translation—kavould you defie
translational motion? What characterized translation?

How could you detect if a certain body violated the laf
equivalence of inertial and gravitational mass? 5.

Two coins haing the same mass and lying on top of each oth-
er are in free fall. Should there be momentum flowing across
the surice where thetouch?What if the upper coin had a
gravitational mass twice the inertial mass? What if the gravi®.
tational mass of the lower coin were twice the value of its in-
ertial mass?

Does the velocity of the center of mass of two bodies change
after a collision®hat does it ta& to change the motion of the
center of mass of a system? 7.

A ball strikes a wall perpendiculargnd bounces béfter an
elastic collision. It had a certain momentum before the colli-
sion. Hav much momentum is transferred to thall® What
does the w&ll do with the momentum®/hat happens to the §.
energy of the ball?

During a one-dimensional collision, tvears lose momentum
because of friction. How does Eq.(13.5) change?

How does a rocket work?

In an explosion, pieces of a body/fbff in different directions.

How—and where from—do they get their momentum? S

Why should the mass of a body increase as its speed ap-
proaches the speed of light?

The pressure of aag eerted upon the alls of a container
can be viered as the result of momentum transfer of particles
to the wall. We kne that the pressure is a quantity which e
ists throughout the body of thag Can you use the kinetic

theory to explain the pressure in the interior of the gas whergq.

there are no walls?

Exercises

Estimate the momentum of the fallimg bodies. alhe Earth
on its orbit around the sun.Axar with four passengers mo
ing at 60 m.p.h. cJhe hullet of a hand gun. &) mosquito in
full flight.

A glider haing a mass of 2.0 kg is pulled from rest across an
air-track with a string for 3.0 sThe momentum current
through the string measures 0.50 NDajermine the tensile
stress in the stringrhe diameter of the string is 1.0 mm.
b) How much momentum has beenviing into the glider?
c) Determine the change of momentum of the glidgWhat

is the final velocity of the body?

The stress in a rope Viag a diameter of 2.0 cm is 4.0°10 13.

N/m?. Determine the momentum current flowing through the
rope.

Part lll: An Introduction to Motion

12.

A heary block rests on top of a table. Momentuow at a
rate of 200 N from the gvéational field into the block, and
at the same rate from thelfi into the table. d&)etermine the
momentum current from the block to the tableHbyv large

is the total momentum current through the fogslef the ta-
ble. c)Each lg has a circular cross section with a radius of
1.5 cm. What is the stress in each leg?

Electrons are accelerated in aTCtrough a weltage of 2.0
kV. What is the engpy, the speed, and the momentum of a sin-
gle electron7The mass of an electron is 9.113kkg. Ne-
glect relativistic effects.

A ball strikes a wall perpendicularind bounces béfter an
elastic collision. Its mass and speed before the collision are
0.40 kg and 10.0 m/s, respeelly. Determine the change of
momentum of the ball. Ho much momentum is transferred
to the wall?

A ball of putty of mass 0.25 kg stek a vall at a speed of 5.0
m/s. How much energy is released in the process? What hap-
pens to the engy which is released®/hat processes is it
used for?

A football player kicks a ball which therid$ of at a speed
of 9.0 m/sThe ball has a mass of 400Tde foot touches the
ball for approximately 0.10 s. &etermine the \&erage mo-
mentum current from the foot to the ball.Ndrmally, the
football will also rotate. Does thiadt change your answer for
the first question?

The system dynamics diagramHig.13.15 depicts a one-di-
mensional inelastic collision of mbodies. Ta& the bodies to
have, respectivelynasses of 2.0 kg and 1.0 kg, and speeds of
7.5 m/s and 0. Let the momentum current be constant at 50 N.
a) Hov much momentum isxehanged? biHow long does

the collision last? ¢) Determine thelecities as a function of
time. d)Determine the rate at which eggris released as a
function of time.

A car haing a mass of 1000 kg mes in an easterly direction
at an angle of 30toward the south. Its speed is 30 m/s.
a) Determine the components of thelacity and the momen-
tum of the car in a coordinate system wherexthé@ection
points east, and thedirection north. bWhat is the kinetic
enepy of the car? cJhe coordinate system is rotated clock-
wise by an angle of 60 Hov does the momentuneetor
change? dBy how much does the kinetic emggrchange after
the coordinate systemas rotated? dpo the components of
momentum and velocity change?

11. Anelastic ball haing a mass 0f 0.20 kg and a speed of 8.0 m/s

hits a vall at an angle of 45 Determine the motion of the ball
after the collision. Determine what happens to the compo-
nents of momentum which are parallel and perpendicular to
the wall. What happens to the energy of the ball.

Earth and Moon orbit their center of mass in about 27 days.
Determine the momentum of the system for an olesemov-
ing with its center of mass.

Electrons hee a rest mass of 9.11-8bkg. a)Determine
their rest engy. b)If the enegy of an electron is 1.2 times its
rest energy, what is its mass? What is its momentum?

23



Chapter 13: Storage, Transfer, and Balance of Momentum

Problems
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A flat open car hang a mass of 1000 kg me horizontally
without friction at a speed of 3.0 mfsperson hging a mass

of 100 kg jumps dfa tree into the madng vehicle. Then the
person runs in the direction of motiand jumps df of the
moving vehicle at a speed of 5.0 mé&lative to the ehicle.

a) How large will the speed of the vehicle be after the person
has jumped d? (Hint: Sole the problem in te steps.)

b) How much enggy was lost for motion after the person
jumped onto the car? (gkect the energy of vertical motion.)

¢) Howv much enagy did the person release at least while 7.
gathering up speed for the jump off the car?

A ball of putty haing a mass of 0.20 kg is tlwa horizontal-

ly acpinst a still standing block ofaed (h&ing a mass of 1.0

kg). The ball sticks to the block and thealwodies continue

to mowe together at a speed of 4.0 m/s. avbitze fluid im-

age of the process, and calculate the speed of the ball before
the collision. b) Repeat the problem for an obsemoving

at a speed of 10.0 m/s in the same direction as the ball.

A bullet haing a mass of 3.0 g and ring at a speed of 400
m/s frst goes through as@den board mounted on a glider on
an air-track. Aftenards, it gets stuck in a board mounted on
a second glider. The masses of the gliders (including boards)
are 750 g and 747 g, respeety. They were at rest initially

and collide after mang three and one meters, respesiij.

a) How fast do the gliders nve after the bllet hit the boards?

b) Hov much enagy has been dissipated as the result of the
bullet going through the first board?

FIGURE 13.27. 8.
400 m/s

30¢9

]

20m

750 g 7479

Determine the speed of the center of mass of the system of
three bodies ifProblem3 before the bllet struck the fist
board, after it went through thedi board, and after it got
stuck in the second board. Interpret the result.

The collision inFig.13.19effectively lasts for about 0.10 s.
Determine the direction and the magnitude of tlezage mo-
mentum flix during this period for bodi#sand B. Hav does
the direction of the momentunuf change if the collision is
shorter?

Two discs mog without friction on an air table and collide as
shawn in the stroboscopic imagEi@.13.28) The mass of the 9.
second disc is 1.5 times smaller than the mass ofrthefie.

a) Determine the absolutealue and the direction of theev
locity of the second disc after the collisionlé&}he enayy of

the discs due to motion consedvduring the collision?

c) Determine the @locity vector of the center of mass of the
system before and after the collision.

FIGURE 13.28. .

Two discs maw without friction on an air table and collide as
shavn in the stroboscopic imag€i¢.13.29. Determine the
ratio of the masses of thedwliscs. Do we determine inertial
or gravitational mass in this manner? Why?

FIGURE 13.29. .

The black ball collides elastically at a speed of 10 m/s with
the white ball which is at resFig.13.30Q. The white ball
movwes at an angle of 8@o the original direction of the black
ball. The speed of the white ball is measured to be 5.0 m/s.
Both balls hae a mass of 2.0 kg. &) what direction and at
what speed will the black ball be ming after the collision?

b) If the collision tales 1/10 s, hw large is the eserage mo-
mentum flix with respect to the black ball (absoluédue and
direction)?

FIGURE 13.30.

Electrons are accelerated through a voltage of 240 kV. Deter-
mine the engy and the speed of a single electron using the
classical relation for kinetic ergyr. Since the speed of an
electron is &irly close to the speed of light, determine the
mass, momentum, and the speed according to thevistiati
relations. Compare the two metho@lke mass of an electron

is 9.11-16% kg.
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