
 

CONTENTS

 

C

 

HAPTER 

 

3  

 

Inductive Phenomena 
and Oscillations

1 Starting, Stopping, and
Oscillating Currents

2 The Law of Induction

3 LR Models of Hydraulic and
Electric Circuits

4 Inductive Elements

5 Oscillatory Systems

6 The Mathematical Side of
Oscillations

The El Niño Southern Oscillation
(ENSO) is one of the large scale

oscillatory phenomena on our planet.
Oscillations can be observed in many

simple and complex systems.
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Fluids, Electricity, Heat, and Motion

 

Many of the flows in nature exhibit what we might call inertia: changing them leads to
observable effects. In general, it is not possible to turn flows on or off instantly; they
take their time to change.

This behavior is called induction. Inductive phenomena abound in fluid flow, electric-
ity, and motion. Here we will study the effect as it makes itself felt in fluid flow and
electricity. First, we will see how including induction leads to more realistic models of
dynamical processes. The the law of induction will be stated, and models of circuits
including resistive and inductive elements will be investigated. We briefly take a look
at two concrete inductive elements in hydraulics and electricity. Finally, we will inves-
tigate oscillations which arise in systems containing capacitors and inductors.

 

3.1 Starting, Stopping, and Oscillating Currents

 

So far, our description of nature makes use of two phenomena: if fluids or electricity
are stored in hydraulic or electric capacitors, the potential difference across the devices
increases; and, if fluids or electricity flow through resistors, a drop of the associated
potential occurs in the direction of flow. As we will see shortly, models of dynamical
processes which only include capacitive and resistive behavior, cannot account for
many important observations—namely those which have to do with starting and stop-
ping currents, and with oscillatory behavior.

 

Currents in 

 

RC

 

 Systems and Real Behavior

 

Consider a simple electric circuit as in Fig.3.1 consisting of a battery, a resistor, and a
switch. As the switch is closed, a current is set up which, according to Chapter 2, is
given by

 

(3.1)

 

where 

 

U

 

R

 

(

 

t

 

) is the voltage across the resistor. If this quantity is constant, so is the cur-
rent set up in the circuit. Note, that according to this model, the current attains the value
calculated with the help of Eq.(3.1) as soon as the circuit is closed: 

 

I

 

q

 

 follows 

 

U

 

R

 

 in-
stantaneously (Fig.3.1).

As a second example study the model of two communicating fluid tanks described by
the laws of capacitance and resistance. The pressure at the bottom of a fluid tank is de-
termined by the level of the fluid, and the pressure difference from the outlet of one
tank to the inlet of the next is responsible for the magnitude of the current of fluid
through the connecting pipe, according to a relation analogous to Eq.(3.1).

As we know from the models studied in Chapter 1, the behavior of the system is de-
scribed by the fluid levels in the two tanks as functions of time as in Fig.3.2. As soon
as the pipe is opened, the fluid current must attain its largest value. It will decrease with
time and reach a value of zero precisely when the levels of fluid in the tanks have be-
come equal. This condition makes it impossible for oscillations of the fluid between
the tanks to occur.

The sudden rise of a current from a value of zero to some other value required by the
resistance law in Eq.(3.1) is certainly unrealistic. Moreover, we know that fluids can
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FIGURE 3.1. As the circuit is closed, 
the current jumps to its value calcu-
lated according to the resistance law.
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FIGURE 3.2. As the pipe connecting 
two fluid tanks is opened, the current 
of fluid suddenly jumps to its initial 
value. 
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Cover picture: Diagram explaining the origin of the El Niño phenomenon. The inset shows the sum-
mary of El Niño indicators. National Oceanographic and Atmospheric Administration.
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oscillate between containers. A simple example of communicating vessels is a U-
shaped glass pipe filled with mercury. If we raise the level of the fluid in one of the
limbs and then let it flow, it will certainly oscillate for a while. Therefore, the models
constructed from containers and resistors (

 

RC

 

 systems) alone cannot explain what we
observe in nature. We need to know how to describe the conditions which lead to
changes in currents, or how changing currents induce other phenomena.

 

Induction and Inductive Driving Forces

 

Let us study the flow of a oil out of a tank having a straight horizontal pipe as in Fig.3.3.
First hold the outlet (point 

 

B

 

) of the pipe closed; the pressure of the fluid will be the
same at the inlet and the outlet of the pipe, and there will be no current. If we now sud-
denly remove the lid from the outlet, the pressure of the fluid at 

 

B

 

 drops to ambient
pressure, immediately leading to a pressure difference from 

 

A

 

 to 

 

B

 

. The current will
rise from zero to a its maximum in a certain amount of time. After that it will decrease
just as the pressure difference decreases because there will be less oil in the tank as
time passes.

The rise of the current from zero to its maximum value in a finite time span is new for
us and cannot be explained in terms of capacitance and resistance. Observe that the
current is zero right at the initial moment even though the pressure difference 

 

D

 

P

 

AB

 

 is
different from zero. Therefore, this pressure difference cannot be responsible for a cur-
rent according to the law of resistance 

 

I

 

V

 

 = – 
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R

 

/

 

R
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.  Put differently, 
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P

 

R

 

 

 

π

 

 

 

D

 

P

 

AB
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Rather, right at the beginning, 

 

I

 

V

 

 = 0, and therefore 

 

D

 

P

 

R

 

 = 0. This means that the entire
pressure difference 

 

D

 

P

 

AB

 

 must be the cause of a different phenomenon—namely the
rise of the volume flux. Since the change of a current is related to what we have called
inductive behavior, the pressure difference responsible for the rise of the current will
be called the 

 

inductive pressure difference

 

 

 

D

 

P

 

L

 

. We also call it the 

 

inductive driving
force

 

. At the first moment when the oil begins to flow we have 

 

D

 

P

 

L

 

 = 

 

D

 

P

 

AB

 

. 

The phenomenon of inductance is measured in terms of how fast the flux changes, i.e.,
in terms of the rate of change of the flux 

 

dI

 

V

 

/

 

dt

 

. The rate of change of the current at the
beginning can be represented by the slope of the 

 

I

 

V

 

–t

 

 curve as it begins to rise from

 

I

 

V

 

 = 0 (Fig.3.4). If the pressure difference available for increasing the current is the
same, the current will rise faster or more slowly according to the properties of the sys-
tem. If the amount of fluid is small, a given pressure difference 

 

D

 

P

 

L

 

 will lead to a fast
increase of 

 

I

 

V

 

.  

As time passes, the current increases. Since it is not zero any longer, there must be a
pressure difference associated with the flow through the resistive element. In other
words, the pressure difference 

 

D

 

P

 

AB

 

 is not solely responsible for increasing the flux any
longer. As the inductive pressure difference decreases, the current rises more slowly
than before. This is exactly what we observe: the slope of the 

 

I

 

V

 

–t 

 

curve decreases with
time. We should expect the current to increase as long as it is smaller than 

 

D

 

P

 

AB

 

/

 

R

 

V

 

.

We can easily understand why there should be a pressure difference from 

 

A

 

 to 

 

B

 

 if the
current of oil is supposed to increase with time. The fluid in the pipe has to be acceler-
ated for this purpose. Having a higher pressure at 

 

A

 

 than at 

 

B

 

 accomplishes just that.
(Remember that we also need a pressure difference if the flow is resistive; however, at
the onset of the current, the flux is still zero, and resistance does not play a role yet.)
The fluid is pushed more strongly from behind, and it accelerates, leading to an in-
crease of the flux. On the other hand, a current decreasing with time must be connected
to a positive inductive difference, meaning that the pressure increases in the direction
of flow (again, if other effects such as fluid resistance do not alter our reasoning).

The cause of the inductive effect in electrical circuits is less obvious. It has to do with
the magnetic field set up by the electric current. If the current changes, so does the
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FIGURE 3.3. A fluid discharging 
through a long horizontal pipe. The 
current cannot jump suddenly to the 
value calculated according to the re-
sistance law. Rather, it rises gradual-
ly.

FIGURE 3.4. For a given inductive 
pressure difference, the current will 
rise faster if the amount of fluid in the 
pipe is small.
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magnetic field. Letting the magnetic field increase or decrease is related to a positive
or negative voltage 

 

U

 

L

 

, respectively (Sections 3.2 and 3.4).

 

1. Why is the pressure difference in the direction of flow not due to fluid
resistance if the flow just started?

2. The electric circuit in Fig.3.1 has just been closed. Why should 

 

U

 

R

 

 be ze-
ro, and why does this pose a problem?

3. Why does an 

 

RC

 

 model of a U-pipe filled with mercury not allow for os-
cillations of the fluid?

4. A pump produces a constant pressure difference 

 

D

 

P

 

AB

 

 along a pipe containing a fluid. Initial-
ly, the fluid is at rest. Why should we expect the flux 

 

I

 

V

 

 to increase to the value of 

 

D

 

P

 

AB

 

/

 

R

 

V

 

?

5. A 

 

negative

 

 inductive pressure difference is associated with an increasing current of fluid.
Why is a 

 

positive

 

 inductive voltage responsible for increasing an electric current?

1. If the flow just starts, the volume flux is zero. Therefore, the resistive
pressure difference 

 

D

 

P

 

R

 

 = – 

 

R

 

V

 

I

 

V

 

 must be zero as well.

2. The electric current should still be zero, meaning that 

 

U

 

R

 

 = 

 

RI

 

q

 

 must be
zero as well. According to the loop rule, the sum of all voltages in the
circuit must add up to zero. With 

 

U

 

B

 

 

 

π

 

 0, and 

 

U

 

R

 

 = 0, we seem to encoun-
ter a contradiction which can only be resolved if we say that there is an-
other voltage in the circuit, which must be responsible for the rate of
change of the current.

3. In an 

 

RC

 

 system, the current has become zero when the fluid levels have become equal. Since
this also means that the pressure difference is zero, the fluid cannot be driven to flow any
longer.

4. When the current has reached that magnitude, the resistive pressure difference equals the
pressure difference 

 

D

 

P

 

AB

 

. Therefore, there is no pressure difference left to continue acceler-
ating the fluid.

5. A voltage is defined as the 

 

negative

 

 electric potential difference. Therefore, we have a 

 

nega-

 

tive

 

 electric potential difference associated with an 

 

increasing

 

 current.

 

3.2 The Law of Induction

 

Changes in currents are related to potential differences. The precise nature of this rela-
tionship will be studied here. We will begin with hydraulic circuits, and then use the
analogy between hydraulics and electricity to formulate the law of induction for elec-
tric processes as well.

 

The Law of Induction in Hydraulics

 

The flow of fluids in straight pipes shows that—when a current is just beginning to
flow—the rate of change of the flux 

 

I

 

V

 

 depends upon the pressure difference available
for accelerating the fluid, which is the pressure difference 

 

D

 

PAB. In fact, experiments
show that the initial slope of the rising IV–t curve is proportional to the pressure differ-
ence across the pipe. Actually, the rate of change of IV and the inductive pressure dif-
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ference are always proportional, not just when a current starts. We only have to note
that the inductive pressure difference is not equal to DPAB if there is fluid friction.

Hydraulic induction is the result of the inertia of the fluid flowing through a pipe.
Therefore, its should be possible to derive the relation between rates of change of cur-
rents and inductive pressure differences on the basis of the laws of mechanics. This we
will do in Chapter 19. However, since the fundamental laws of motion cannot be
proved either, we can just as well accept the observations as an expression of a law of
hydraulics:

EXAMPLE 3.1. Estimating the hydraulic inductance.

Water is at rest in a pipe. As the tap is opened, the pressure difference along the pipe is 2.0 bar.
Initially, the current of water increases at a rate of 2.0 liters/s2. a) How large is the inductance of
the water in the pipe? b) How fast would the current rise initially if the pipe were twice as long?

SOLUTION: a) The inductance is calculated from Eq.(3.2):

This figure is fairly common for fluid pipes. An oil pipeline of several 100 km length has a sim-
ilar hydraulic inductance.

b) If all other factors are kept constant, doubling the length of the pipe will double the amount
of water to be accelerated. Therefore we expect the inductance to increase by a factor of 2. This
will lead to an initial rate of change of the flux of 1.0 liters/s2.

B

Pressure Differences in Hydraulic Circuits

It is important to understand the nature of a pressure difference across a pipe containing
a fluid (Fig.3.6). As we have seen, the pressure difference from A to B resulting, for
example, from a pump, may be related to more than just one phenomenon. The pres-
sure may change in the direction of flow due to fluid friction, but it may just as well
decrease or increase from A to B because the current is changing in time. We know two
extremes: either, the current is not changing and the entire pressure difference relates
to fluid friction, or the current is zero at a moment in which case the pressure difference
is solely due to the time rate of change of the current. In other words, in these extreme
cases we have, respectively, DPAB = DPR, or DPAB = DPL. In general, the pressure dif-
ference is due to both phenomena simultaneously, which means that it is divided be-
tween the processes:

(3.3)

B Law of induction: The inductive pressure difference DPL and the rate of
change of the flux of volume dIV/dt are proportional. The constant of pro-
portionality is called the inductance LV of the system (fluid in a pipe):

(3.2)

A current increasing with time is associated with a negative pressure dif-
ference, whereas a decreasing current leads to a positive DPL (Fig.3.5). 
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FIGURE 3.5. Increasing and de-
creasing currents are related to nega-
tive and positive inductive pressure 
differences, respectively.
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(This can be visualized more easily in an electric circuit (Fig.3.6) where inductors and
resistors are separate elements placed one after another, i.e., in series. See the next sec-
tion.) We may imagine the pressure to drop (or rise) first because of the inductive pro-
cess, and then to drop due to friction. Together the inductive and resistive pressure
differences are equal to the pressure difference from A to B.

Remember that DPR may only be negative (in the direction of flow), whereas DPL may,
as shown in Eq.(3.3), take either sign, making DPAB either negative or positive. A pos-
itive value of DPL means that the fluid flux is decreasing with time.

EXAMPLE 3.2. Resistive and inductive pressure differences.

Water is flowing out of a slender tank through a straight horizontal pipe as in Fig.3.3. The pipe
has a length of 1.75 m, and a radius of 2.0 mm. Initially, the level of water in the tank is 0.20 m.
The graphs in Fig.3.7 show the modeled behavior of the system with and without taking induc-
tance into account. The flow is laminar at all times. a) Estimate the inductance and the resistance
of the fluid in the pipe. b) Estimate the inductive and resistive pressure differences for t = 20 s.
c) Determine the function IV(t) after a fairly long time (t > 10 s), and calculate the cross section
of the tank. d) Determine the total pressure difference along the pipe at t = 20 s, and estimate the
volume of water in the tank at that moment.

SOLUTION: a) As in Example 3.1, the inductance can be computed if we know the inductive
pressure difference and the rate of change of the flux of volume. The latter may be obtained
graphically from the slope of the curve rising at t = 0 (Fig.3.7b). Graphical determination yields
a value of 6·10–6/0.45 m3/s2 = 1.3·10–5 m3/s2. The inductive pressure difference at t = 0 is equal
to the pressure difference across the fluid column in the tank:

The inductance turns out to be

The resistance in laminar flow is

b) The inductive pressure difference is obtained with the help of the law of induction if we know
the rate of change of the current. This quantity can be estimated graphically from the first graph
(Fig.3.7a) which yields dIV/dt (t = 20 s) ª – 3.7·10–6 m3/s / 30 s = – 1.2·10–7 m3/s2. Therefore

The resistive pressure difference is calculated on the basis of the resistance law

The current at t = 20 s is obtained from the first graph (Fig.3.7a).

c) After the current has risen quickly, the inductive phase is mostly over, and inductive pressure
differences become small. The function IV(t) is almost identical to the one calculated without
taking induction into account. Therefore we can determine an approximation to IV(t) by calcu-
lating the solution for discharging a container, looking at the system as a combination of capac-
itor and resistor:
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FIGURE 3.7. Graphs showing the 
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puted result without taking induction 
into account. Figure b shows an en-
largement of the upper graph.
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We have IVo = 7.0·10–6 m3/s. The current will decrease to 1/e of the initial value in one time con-
stant t. Inspection of the first graph (Fig.3.7a) shows that t ª 30 s. This yields KV = t/RV =
1.08·10–7 m3/Pa. From this we can calculate the cross section of the container:

d) The total pressure difference is the sum of the inductive and resistive differences:

Therefore, the water level is 0.10 m. The volume of water can be calculated with the help of the
capacitance which we get from the time constant t = RVKV; therefore, KV = t /RV = 30/2.8·108

m3/Pa = 1.1·10–7 m3/Pa. Now we have

Naturally, we could also determine the amount of water which has left the tank in the time span
from 0 s to 20 s (by determining the area between the IV–t curve and the t–axis), and deduct the
value from the initial volume.

B

Induction in Electricity

Electricity and hydraulics share deep analogies. Both phenomena are described in
terms of a substancelike quantity which we can imagine to flow and to be stored in sys-
tems. Electric charge and amounts of fluids each satisfy a law of balance. Each quantity
possesses a potential, and potential differences add up to zero along closed loops in cir-
cuits. Differences of the potential related to the processes are responsible for resistive
flow, and in both cases we introduce capacitive and resistive laws.

The law of induction. The analogy carries over to inductive phenomena (Table 3.1). It
is equally impossible to have electric and hydraulic currents suddenly jump to values
determined solely by resistive laws, and there are electric circuits which admit oscilla-
tory behavior. These phenomena are said to be the result of inductive elements com-
bining with those we already have used in the description of electric circuits. In
inductive elements, the rate of change of the electric current is related to an inductive
voltage according to the law of induction:

Magnetic fields. The fundamental difference between electric and hydraulic induction
can be found in the cause of the phenomenon. Fluids need a pressure difference to
change their currents, since they are subject to inertia. Electric inductance, however, is
caused by the coupling of electric currents and magnetic fields (Part V). Electric cur-
rents produce magnetic fields whose strength depends upon the current. If we let a cur-
rent be increased, the magnetic field associated with it must increase as well. The

A gKV= = ◊ -r 1 05 10 3. m2

D D DP P PAB L R= + = + -( ) ª -18 1000 980Pa Pa Pa

V K P K PV K V AB20 20 20 1 1 10 980 1 06 107 3 4 3( ) = ( ) = ( )( ) = ◊ ◊ = ◊- -D -D . .m m

B Law of induction: The inductive voltage UL and the rate of change of the
electric current dIq/dt are proportional. The constant of proportionality is
called the inductance L of the element (SI-unit: Henry or H):

(3.4)

A current increasing with time is associated with a positive inductive volt-
age, whereas a decreasing current leads to a negative UL. 

UL L
dIq

dt
--------=
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phenomenon of the increase of the field must be caused by the electric current. Elec-
tricity causes other phenomena if it flows either downhill or uphill: this is the source
of the electric potential difference related to inductive processes (Fig.3.8).

Voltages in electric circuits. Basically, all elements used in electric circuits—such as
wires, resistors, and capacitors—share the property of being inductors as well. How-
ever, normally, their inductance is very small allowing us to treat the elements as hav-
ing just one property. To get large inductances, inductors are made from wire wound
to different types of coils, such as a straight solenoid (Section 3.4). In circuit diagrams,
inductors are represented as black rectangles (Fig.3.9).

If an electric element in a circuit has properties of both inductance and resistance, the
voltage across the element is the sum of the inductive and resistive voltages (Fig.3.9):

(3.5)

This relation is analogous to what we have seen in the case of hydraulic circuits, as ex-
pressed by Eq.(3.3).

1. Why is there no minus sign in the law of electric induction in Eq.(3.4) as
there is in the hydraulic case in Eq.(3.2)?

2. Consider an electric circuit as in Fig.3.9 or a pipe containing a fluid as in
Fig.3.6. Is it possible to have a negative voltage or a positive pressure dif-
ference from A to B?

3. In a circuit such as in Fig.3.9, the switch is closed. Why does the electric
current attain a steady value? How is it determined?

1. The electric law of inductance is written in terms of the voltage rather
than the potential difference. Therefore, the sign changes.

2. The condition may arise if a current is decreasing fast leading to a large
negative inductive voltage or a large positive inductive pressure differ-
ence.

3. The current increases with time, letting the potential differences across
the resistor increase. As UR = – UB, we have UL = 0 V, and the current cannot change any
longer. The value of the current is determined from the resistance law using UR = – UB.

TABLE 3.1. Electric and hydraulic elements compared

Capacitors Resistors Inductors

Hydraulics

Electricity

FIGURE 3.8. If an electric current 
increases, it induced a potential dif-
ference which makes it flow down-
hill, causing a magnetic field to be 
increased. A decreasing current is re-
lated to a decreasing field.
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of magnetic field
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b. Decreasing electric current
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elements in electric circuit diagrams. 
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3.3 LR Models of Hydraulic and Electric Circuits

The simplest systems including inductive elements are those represented in Figs.3.6
and 3.9. A pump or a battery are used to set up a constant pressure difference and a
constant voltage, respectively, from point A to point B. What are the system dynamics
models and the system behavior?

Starting and Stopping a Current in an LR Circuit

Let us first discuss the expected behavior which should be the same in both cases. Ini-
tially, right after the circuits have been closed, the potential difference from A to B is
equal to the negative value of the pressure difference of the pump and the voltage of
the battery, respectively. Since the current is zero at this time, resistive potential differ-
ences are zero as well. Therefore the current should change at a rate dI/dt =  – DjAB/L
(Fig.3.10). As the current increases, the magnitude of the (negative) resistive potential
difference must increase as well. The magnitude of the inductive potential difference
must therefore decrease with time, leading to a decreasing slope of the rising current.
Finally, when the current reaches a value of I = D jAB/R, the inductive potential differ-
ence is zero, and the current will not change any longer. Naturally, the process can be
reversed: turning a current off does not lead to an immediate result; rather, the current
decays exponentially.

The behavior described here in qualitative terms can be easily observed, for example,
by measuring and displaying the quantities in an electric circuit with the help of a cath-
ode ray tube (Fig.3.11).

Inductive Time Constant

As we shall see below, the current is an exponential function of time. We have encoun-
tered such behavior before (Chapters 1 and 2). In Chapter 2 we introduced the notion
of the (capacitive) time constant. Obviously, the behavior over time of LR systems can
be described in similar terms. We introduce the inductive time constant tL which—as
we have seen in Chapter 2—is measured by the section determined by the tangent to
the curve at the moment the circuit is closed, and the horizontal line representing the
steady value of the current (Fig.3.12). The graphical representation also tells us how
this time constant can be determined. The rate of change of I(t) at the initial moment
is equal to the ratio of the steady value of the current reached and the time constant:

Since the time rate of change of the current is equal to the ratio of the initial value of
the potential difference and the inductance, we have

FIGURE 3.10. Simple LR behavior: 
the current rises exponentially and 
approaches a steady value.
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(3.6)

The time constant also represents the time span necessary for the current to rise to a
fraction of 1 – 1/e ª 0.64 of the final steady value.

A System Dynamics Model of Starting a Current

Consider the electric circuit of Fig.3.9. As we close the switch, the current starts rising
from a value of zero to reach a final steady value. How the current changes is described
by the law of induction: the rate of change of the current is equal to the ratio of the in-
ductive voltage and the inductance of the inductive element. This is our starting point
to construct the system dynamics diagram and model. We draw symbols representing
the inductive voltage UL, the inductance L, and the rate of change of the current, and
connect the former two elements to the latter (Fig.3.13). This is used to represent the
equation

The next step involves obtaining the current from its rate of change. There is a new as-
pect in the model we are constructing: we have not yet encountered laws stating the
rate of change of a quantity, except—indirectly—laws of balance where the sum of all
currents with respect to a system is equal to the rate of change of the quantity stored.
Here, however, we are not dealing with a law of balance. Still, on a purely mathemat-
ical level, there is no difference between what we need to do—namely calculate the
current from its rate of change—and calculating the system content from the sum of
the currents. Both processes require integrating a rate of change to obtain the quantity
we are looking for. Since we do not deal with a law of balance here, the system dynam-
ics diagram should contain a new symbol denoting the operation

(Fig.3.13). To obtain the current as a function of time we need its initial value which,
in our example, is zero. A system dynamics program obtains the solution of this rela-
tion by the same numerical method which is used in the case of laws of balance.

Now we are ready to proceed. Knowing the current, we can calculate the resistive volt-
age from the resistance law, and using Eq.(3.5) we obtain the inductive voltage. Note
that UAB in Fig.3.9 is the negative value of UB (voltage of the battery). This closes the
feedback loop present in the simple LR system (Fig.3.13).

Formal Description of LR Systems

Filling in the equations representing the relations in the system dynamics diagram of
Fig.3.13 finally yields the complete mathematical model. The equations making up this
model are:

(3.7)

The model in Eq.(3.7) is made up of three equations and an initial value. The first equa-
tion takes the form of a differential equation for Iq(t). The second determines the induc-

t L L R=

rate of change of I U Lq L=

FIGURE 3.13. System dynamics di-
agram of the model of an LR system 
representing the starting of a current. 
Note the law of induction (dashed 
line), and the process of integrating 
the rate of change of the current 
(gray underlined area). The latter 
adds an automatic numerical process 
to the system model.
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tive voltage from the other voltages, and the last yields the resistive voltage from the
resistance law. Together they determine the solution of the problem. Inserting the latter
two equations into the former we have

Its solution is

(3.8)

which can be demonstrated by plugging the result back into the differential equation.
Here, tL is the inductive time constant already expressed in Eq.(3.6). Note that since
UB is negative, the current is a positive quantity increasing from a value of zero and
reaching a steady value after long time.

EXAMPLE 3.3. Inductive time constants.

In Example 3.2, a) determine the inductive time constant by graphical means. b) Compare the
result to a determination with the help of Eq.(3.6). c) If the fluid level in the tank could be kept
constant, how long would it take for the current to reach 99% of its final value?

SOLUTION: a) The current rises to about 64% of its final value in one time constant. Since there
is no steady state, we use the maximum value of the current in the graph of Fig.3.7a, which is
about 6.7·10–6 m3/s. 64% of this (ª 4.3·10–6 m3/s) is reached at roughly 0.5 s after the start. A
rough measure of the time constant therefore is 0.5 s.

b) On the other hand, the inductive time constant is

c) With a constant fluid level in the container, the driving pressure difference stays constant. In
this case we have the simple problem of starting a current discussed above. Since – UB/R is the
initial current, we have

This can be solved for the unknown time span:

With a time constant of 0.5 s, this turns out to be 2.3 s.

B

EXAMPLE 3.4. An electric circuit containing an inductor.

Consider the electric circuit shown in the diagram. An ideal inductor is connected in series to a
resistor, having a resistance of 24 W, and both are connected in parallel to another resistor (72
W). Together the three elements are connected to a battery of constant voltage (12 V). At t = 0 s
the circuit is closed. a) Give a qualitative sketch of the inductive voltage, i.e. the voltage across
the solenoid, as a function of time. Determine the maximum value of the voltage. b) Give a qual-
itative sketch of the current through the first of the resistors. What is the maximum value of the
current? c) Sketch the current through the battery as a function of time.

SOLUTION: As the circuit is closed at t = 0 s, the voltage across R2, and across R1 and the sole-
noid, jumps to 12 V. In the branch with the inductor, the current is zero since it has not had time
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to rise. Since there is no inductor in the branch with R2, the current may jump to an appropriate
value instantaneously. In the section with the solenoid, the current will rise according to the rules
discussed in this section on LR circuits; as depicted in Fig.3.12, it rises until it reaches a steady
value.

a) Since there is no current through the branch with the first resistor and the inductor initially,
the voltage across R1 must be zero. Therefore, at t = 0 s, the voltage UL = 12 V, which is the
largest value. From there it decreases exponentially to zero when steady conditions are reached
(Fig.3.15a).

b) As discussed, the current through R1 is zero initially. When steady conditions have been at-
tained, the voltage across the inductor is zero, which means that UR1 = 12 V. As a consequence
the largest value of the current is 12 V / 24 W = 0.50 A (Fig.3.15b).

c) The current through the branch with R2 obeys the resistance law. Since the voltage is a con-
stant 12 V, the current is 12 V / 72 W = 1/6 A. We have to add this constant current to the one
through R1 to obtain the current through the battery (Fig.3.15c).

B

3.4 Inductive Elements

The phenomenon of induction has to do with inertia of fluids and magnetic fields in
hydraulics and electricity, respectively. These observations permit us to relate induc-
tances of elements to mechanical properties of fluids in the case of hydraulics, and
properties of electromagnetic fields in the case of electricity. However, to do so we
need theories of mechanics and electromagnetism. Since these will be studied later
(Part III and Part V), we will present only a couple of results of practical interest at this
point. These are the inductances of a fluid in a straight pipe, and of a long wire wound
to a solenoid.

Hydraulic Inductance of a Fluid in a Pipe

The inductance of a fluid in a pipe of length l and radius r depends upon the density of
the fluid r, the length l, and the cross section A = p r2 of the pipe. It increases with the
density and the length, and decreases with increasing cross section:

(3.9)

While the first two relations are easy to understand, the latter is more difficult to deter-
mine. First, the inertia, i.e. the mass of the fluid to be accelerated, increases linearly
with density and length. Intuitively, it makes sense that twice the inductive pressure
difference leads to the same rate of change of the current of fluid if either the length or
density are doubled. Figuring out the dependence of the inductance upon the cross sec-
tional area of the pipe, however, causes more problems. On the one hand, twice the
cross section gives twice the surface for the pressure to act; on the other hand twice as

t
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FIGURE 3.15. Voltage and currents 
as functions of time.

L
l

AV = r



3.4  Inductive Elements

Part I: An Introduction to Dynamical Processes 13

much fluid has to be accelerated. These factors cancel each other which means that the
same inductive pressure difference leads to the same speeding up of the fluid. However,
twice the cross section means half the fluid speed for a given volume current. There-
fore, twice the cross section leads to twice the rate of change of the current for a given
inductive pressure difference.

There is an important point to be noted about hydraulic inductors. We know that induc-
tance is related to the rate of change of the current of fluid through a pipe or similar
element. Having this rate of change, we have an induced pressure difference. It is pos-
sible, however, to have pressure differences in frictionless flow do to still another phe-
nomenon. If a steady current flows through a narrowing pipe, its pressure changes in
the direction of flow (it decreases; see Chapter 22). Since the current does not change,
the pressure difference must be the result of a phenomenon which is different from hy-
draulic inductance. Therefore, here we will consider only pipes having constant cross
section.

Electric Inductance of a Solenoid

A solenoid is a tightly wound straight coil of wire. With an electric current flowing
through the wire, a magnetic field is set up in the cylindric space. Coils of this type are
often used for electromagnets. The magnetic field can be made even stronger if the so-
lenoid is filled with a core composed of ferromagnetic materials such as iron.

As we shall see in Part V of the book, the magnetic field depends upon the magnitude
of the current flowing through the wire, and the number of windings per length of the
coil. Since the increase or decrease of the field occupying the space inside the solenoid
is responsible for the inductive behavior of the element, the inductance is expected to
depend upon its volume and the number of windings per unit length. In Chapter 27, we
will show that

(3.10)

Here, mo is a fundamental constant, called the permeability constant having a value of
4p·10–7 H/m. The number of windings per meter is abbreviated by n, and A and l are
the cross section and the length of the solenoid, respectively. With an iron core, the
field and the inductance of the coil increase several hundred or thousand fold.

EXAMPLE 3.5. Inductance of water pipes.

Pipes having a diameter of 0.60 m lead from an artificial lake down into the valley. Their length
is 350 m. a) What is the hydraulic inductance of a single pipe? b) Water is flowing through a
pipe with a current of 1.0 m3/s. If the current had to be stopped in 0.10 s, how large would the
induced pressure difference be?

SOLUTION: a) The hydraulic inductance of a pipe is determined according to Eq.(3.9):

b) Because of the change of the current of water, there will be an induced pressure difference
along the pipe. With an average rate of change of the current of 10 m3/s2, we have

B

FIGURE 3.16. A solenoid, a straight 
tightly wound coil of wire, produces 
a magnetic field filling the interior, 
directed along the axis of the coil.
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EXAMPLE 3.6. Inductance of solenoids in series.

A long wire is wound up in series on two cardboard pipes. The first has a length of 20 cm and a
diameter of 6.0 cm, while the length and the diameter of the second are 10 cm and 4.0 cm, re-
spectively. On the first cardboard pipe, there are 200 windings, on the second there are 300. De-
termine the inductance of the setup.

SOLUTION: First, we calculate the individual inductances according to Eq.(3.10). They are

Now we have to determine the inductance of two inductors in series. The voltage across both
together is the sum of the individual voltages:

Using the law of induction in Eq.(3.4), we obtain

since the current and its rate of change are the same for both elements. We can conclude that the
inductance of inductors in series is the sum of the individual inductances. In our case:

B

3.5 Oscillatory Systems

Oscillatory processes—simple and complex—abound in nature, and in technical and
social systems. They are by no means just a physical phenomenon. However, physical
oscillatory systems are fairly easy to study, and they demonstrate the structure hidden
behind the appearance.

Put simply, oscillations are repetitive phenomena. Water swapping from one tank into
another, and back, is an example of a simple oscillatory system (Fig.3.17). Here, the

oscillations are periodic, usually decreasing with time, showing a rather simple form.
There are more complex phenomena, such as oscillations in chemical systems. If reac-
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tions occurring in a reactor are fed by a flow of some of the species—or if some species
are removed—and if the reactions satisfy certain rules, the amount of the species in-
volved may oscillate back and forth. The calcium oscillation shown in Fig.3.18 is pe-
riodic like the one of water shown above, but the shape of the curves is rather different
from that of a simple oscillation. 

Many natural systems exhibit very complex, even aperiodic changes. Still, the basic
characteristic of oscillatory change is clearly visible. Consider the El Niño Southern
Oscillation, a phenomenon in which the coupling of the atmosphere and the ocean over
the equatorial Pacific creates a large scale phenomenon of meteorological change
which repeats itself every two to seven years or so (Fig.3.19).

During non-El Niño conditions (Fig.3.19a), trade winds blow towards the west across
the equatorial Pacific. Warm surface water accumulates in the west Pacific, where sea
surface temperatures are about 8∞C higher than off the coast of South America; the
lower temperatures are due to an upwelling of cold water from deeper levels. The cool
water is within 50 m of the surface near the American continent. During an El Niño
(Fig.3.19b), the trade winds let off in the central and western Pacific. This leads to a
depression of the boundary between warmer and colder water in the eastern Pacific,
and an elevation near Asia. The surface of colder water dropps to about 150 m off the
coast of South America. The efficiency of upwelling to cool the surface is cut off and
the sea surface temperatures rise. The changes in ocean currents is reflected in a change
of the weather as well. In particular, the easterly trade winds are weakened during El
Niño, and rainfall shifts eastward following the warm water.

FIGURE 3.19. …and some very complex. The El Niño Southern Oscillation (ENSO) is an os-
cillatory phenomenon involving the atmosphere and the ocean in the region of the equatorial Pa-
cific. The ENSO index (Figure c) is a combination of different measures which indicate presence
or absence of the El Niño effect.

Here, we will first study oscillations from a more qualitative viewpoint, describing the
behavior, discussing the example of hydraulic oscillations, and creating a first system
dynamics diagram. In Section 3.6, we will turn to the mathematical description of the
phenomenon.

0.00

0.50

1.00

1.50

0 2 4 6 8 10

Time / s

C
he

m
ic

al
 s

pe
ci

es
 / 

m
ol

FIGURE 3.18. …some more com-
plex like this chemical system (a cal-
cium oscillator)…

a. b.

c.



Chapter 3:  Inductive Phenomena and Oscillations

16 Fluids, Electricity, Heat, and Motion

Communicating Containers

Why do some systems show oscillatory behavior? To answer this question, let us study
two communicating water tanks (Fig.3.20). We know that if we fill them with a highly
viscous oil up to different levels and then watch the fluid flow, we will see a behavior
as in Fig.3.2. The current through the connecting pipe will decrease with time from its
maximum value, and the fluid in the tanks will reach the same levels and then stop
flowing. We know from the models constructed in Chapters 1 and 2 that this type of
behavior is the result of the interplay of storage devices (capacitors) and resistors. We
speak of so-called RC-systems.

Fluids oscillating back and forth: the role of inertia. If, on the other hand, a fluid
with low viscosity is used, and if the pipe is made wide enough, we will encounter a
totally different phenomenon. Let the fluid be higher in the left tank in Fig.3.20. First,
as we already know from Section 3.1, the current will rise to a certain value from zero,
rather than start at the highest rate. The fluid begins to flow gradually from the left to
the right tank. Moreover, experience tells us that the current will be largest—rather
than zero—when the fluid levels have reached the same value. Since the fluid is still
rushing though the pipe, the level in the right tank will continue to rise, and it will de-
crease further in the left container. At some point, the fluid level in the right tank will
reach its highest value, and the current will momentarily stop. Now the flow begins to
reverse its path, until the left tank is filled to its highest point again. In this manner the
fluid oscillates back and forth between the tanks. With fluid friction present, we expect
the amplitude of the oscillation to decrease with time as shown in the graph of Fig.3.17.

What makes the fluid current rise gradually at the beginning and reach its maximum
value when the fluid levels are equal, instead of stopping at that point? We already
know the answer from Section 3.1: induction is the cause of this phenomenon. There-
fore we should expect systems of containers and pipes which include the effects of in-
duction to exhibit oscillatory behavior. Indeed, this is the case. In summary, for a
system to show oscillatory behavior two conditions have to be fulfilled: 

R there must be two storage devices for the quantity of fluid to be able to flow
back and forth, and

R the flow must show inductive behavior so that it will not stop precisely the first
time the fluid levels have become equal. 

System dynamics diagrams. Let us construct the system dynamics diagram of the
system of communicating containers in Fig.3.20. We shall make the same model as-
sumptions about the properties of tanks and pipes as in Chapter 1, with the exception
that induction will be included. In our models, tanks only have the property of capac-
itance—we simply neglect that there is fluid friction as well, and that a tank might also
be an inductor. The flow of the fluid through the pipe shows resistive and inductive be-
havior, as discussed in Section 3.2. We may represent our model in terms of an electric
circuit including these same elements—namely a capacitor, an inductor, and a resistor
(Fig.3.21). 

We already know all the important elements to create the system dynamics model of
the oscillatory process. First, in Section 1.1, we created a model for communicating
lakes (Fig.1.11). This model contains two storage elements representing the amounts
of water stored in each of the lakes. Knowing the volume of water we can calculate the
pressure at the bottom of the lakes from their capacitances. The difference of these
pressure values is like the voltage of a battery in a circuit containing a resistor and an
inductor (Fig.3.9). Knowing this value, we can calculate the current through these el-
ements as in the model presented in Fig.3.13. The current is equated to the flux of fluid

FIGURE 3.20. Water oscillates be-
tween two communicating tanks.

R

C1

L

C2

FIGURE 3.21. The electric circuit 
representing a model of the commu-
nicating tanks in Fig.3.20.
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flowing from one tank to the other. Therefore, by simply combining the system dynam-
ics diagrams in Figs.1.11 and 3.13, we obtain the desired model (Fig.3.22).

Simulation of the model shown in Fig.3.22 leads to a solution just like the one in the
graph of Fig.3.17 which demonstrates that we are on the right track. Simple oscilla-
tions occur in systems combining capacitors, inductors, and resistors (so-called LCR-
systems). If the resistance RV is set to zero in the model, the oscillation will be un-
damped, which is just what we should expect.

Description of Oscillatory Behavior

Let us now describe the behavior of the most simple oscillatory system in more detail.
Experiments and models of LC-systems show that the oscillation—described by one
of the important variables such as fluid volume in a tank or pressure, or charge, current
or voltage in an electric circuit—takes the form of a sine-curve (Fig.3.23). This is often
called a harmonic oscillation.

Descriptive quantities. There are three quantities which fix the function of time de-
scribing the solution of the oscillatory problem. The first is the amplitude of the oscil-
lation which is half the magnitude of the difference between maximum and minimum
of the sine-curve (Fig.3.23). The second is the period T of the oscillation, or its fre-
quency f. Period and frequency are simply related by

(3.11)

Finally, the shift of the curve with respect to the origin is called the phase constant j.
With these three quantities, the oscillation can be represented by

(3.12)

Here, x stands for any of the quantities which change accordingly, such as the volume
or level of fluid in a tank, the pressure at the bottom of a tank, the flux of fluid, or elec-
tric quantities such as charge, voltage, and current, and so forth. Often, the angular fre-
quency w is introduced instead of the frequency:

(3.13)
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With its help harmonic oscillatory behavior can be represented as follows:

(3.14)

Determining the period of oscillation. It is interesting to ask which system parame-
ters the period or angular frequency of simple harmonic oscillations depend upon. We
will be able to motivate the answer without setting up all the equations of an oscillatory
system and solving them at this point. Refer to the example of two communicating
tanks discussed above (Fig.3.20), and consider the fluid current as a function of time
for the first quarter of a period. During this time interval, the current starts from zero
to reach its highest value, and the levels of fluid in the tanks have become equal. Two
phenomena combine to create this result. At the beginning, the inductive process of
starting a current in an LR-system leads to the initial rise of the function. This happens
on a time scale measured by the inductive time constant tL derived in Eq.(3.6). At the
same time, the left container is discharging, and the right one is being filled, all of this
on a time scale measured by the capacitive time constant tC (Chapter 2). Since the pe-
riod of oscillation is expected to increase if the inductance, and therefore the inductive
time constant, are increased, we can assume T to grow with tL. The same must be true
for the relation between the period and the capacitive time constant. Increasing the ca-
pacitance of the system should lead to an increase of the period. In summary, we should
expect the square of the period to be proportional to the product of both time constants:

Since tL = LV/RV, and tC = RVKV, the period of oscillation should be proportional to the
square root of the product of LV and KV. This is indeed the case. As we shall see in
Section 3.6, this is indeed the case. The result will be found to be

(3.15)

Naturally, the results can be transferred to electric phenomena. We simply replace vol-
ume by charge, pressure by electric potential, hydraulic inductance by the electric
counterpart, and so forth.

1. Are the tanks or capacitors in Figs.3.20 and 3.21, respectively, in series
or in parallel? What, therefore, is the total capacitance of the system of
two containers?

2. A system composed of an electric capacitor and a solenoid is the sim-
plest kind of an electromagnetic oscillator. Which quantity oscillates
back and forth? Where are the two storage devices we said an oscillatory
system should have? Which element shows inductive behavior?

3. What is the period of oscillation of mercury in the U-tube shown in Fig.3.17? What is the
range of values of the period of oscillation of the El Niño phenomenon?
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